

Advait Chavan

Professional Background

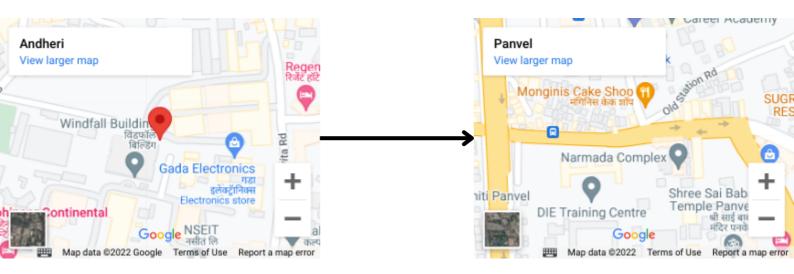
Currently in final year pursuing B.E. Electronics Engineering. I have secured 9.36 CGPA (till 6th Sem) and have several skills including Data Analysis, Python, P-spice simulation, Multisim, Machine Learning, MySQL, Excel.

I have worked on various personal projects related to Data Analysis, Machine Learning, Excel and Python. Also, I have participated in various challenges and competitions on Kaggle and even got a decent rank on the Kaggle leader board.

Also, I have worked on Book Recommendation Engine which is based on Collaborative Book Filtering (CBF) technique as part of mini project in Sem 6. Currently, I am working on Sign Language Detection for deaf and dumb people which is a group project for the Final year.

As I am a fresher it would be great to experience the real challenges of the corporate world and understand how things work. Being a fresher, I think I am very flexible and adaptive to learn new things. I have theoretical knowledge. But I am waiting to use my theoretical knowledge in a practical way. And I believe by putting significant efforts, I will learn.

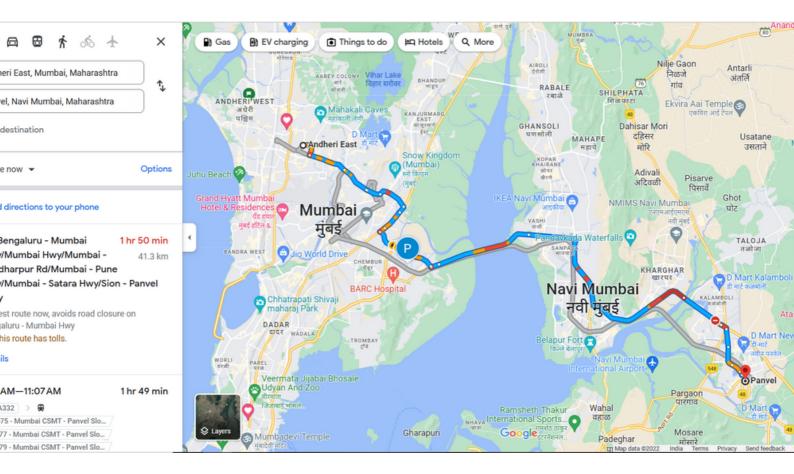
<u>Table of Contents</u>


Professional Background		1
Table of Contents		2-3
Data Analytics Process		
 Description 		4
 Design 		5
 Conclusions 		6
Instagram User Analytics		
 Description 		7
 The Problem 		8-9
• Design		10
 Findings 		11-18
 Analysis 		19-20
 Conclusions 		21
Operation Analytics and Invest	igating Metric Spike	
 Description 		22
 The Problem 		23-24
• Design		25
 Findings 		26-38
 Analysis 		39-40
 Conclusions 		41
Hiring Process Analytics		
 Description 		42
The Problem		43
 Design 		44
 Findings 		45-51
 Analysis 		52
Conclusions		53

<u>Table of Contents (Cont..)</u>

MDB Movies Analysis

 Description 	 54
The Problem	 55-56
Design	 57
Findings	 58-67
 Analysis 	 68-69
Conclusions	 70
Bank Loan Case Study	
 Description 	 71
The Problem	 72
Design	 73-77
Findings	 78-101
 Analysis 	 102-103
Conclusions	 104
(YZ Ads Airing Report	
 Description 	 105
The Problem	 106
Design	 107
 Findings 	 108- 124
 Analysis 	 125- 127
Conclusions	 128- 131
ABC Call Volume Trend	
 Description 	 132
The Problem	 133
Findings	 134- 141
 Analysis 	 142- 144
Conclusions	 145- 146
Appendix	 147- 149


Data Analytics Process

Description

We use Data Analytics in everyday life without even knowing it.

Your task is to give the example(s) of such a real-life situation where we use Data Analytics and link it with the data analytics process.

Data Analytics Process Design

<u>Scenario</u>: Going from Andheri (place in Mumbai) to Panvel (Place in Navi Mumbai)

If a person wants to go from one place to another say Andheri to Panvel in our case, he/she may have many options to go for during the transit.

But he/she will only choose the best option according to his/her will.

The person will go through all the options which are available ad will do a step-by-step analysis while selecting the best route from his/her current location to the desired location.

The following steps would be taken by the person while making the right decision:-

- <u>Step 1: Plan</u>: -- First, one will decide which mode of transport will be most preferable i.e. Roadway or Railway In Roadway one has two options i.e. Either he/she should take a Uber, Ola, Meru etc. or a BEST/NMMT bus. In Railway one has three options wiz Western line, Harbor Line and Central Line
- <u>Step 2: Prepare:</u>-- If one opts for Roadways, he/she has two options depending upon how much he/she is willing to pay wiz Uber/ola/meru or BEST/NMMT. If one opts for Railways, he/she has three modes options wiz (First class, AC class and Second Class) in which he/she can select which railway line route to take.
- <u>Step 3: Process</u>: -- One needs to think whether he/she which of the above-mentioned route will make his/her journey fast, comfortable as well as is cost effective.
- Step 4: Analyze: -- It's Obvious that if one is travelling alone no/some extra luggage/bag, he/she will not opt to pay Rs.800-1500 on Uber/Ola/Meru Cab along with the toll-charges (at Vashi on Mumbai Pune Expressway) The time taken by road to reach Panvel from Andheri is almost 1.5 – 2 hours. But the same transit can be done via Railway in just 50 minutes to 1.5 hour (depending upon type of train Fast or Slow) [Avoiding trains on Sunday due to MegaBlocks]. One can opt for the first-class ticket which costs around Rs.100 else can go for the second-class ticket which costs for just Rs.20
- <u>Step 5: Share:</u> -- After finally going through the above-mentioned steps one can just book a direct cab through the respective (OLA, UBER, MERU, etc.) apps. Else one can go to the station and ask for the ticket (First-class, second-class) from the ticket vendor at the ticket window, or could use an ATVM (Automatic Ticket Vending Machine) for buying the tickets via the ATVM card or just using UPI for the payment, or one could directly book his/her ticket via the UTS app.
- <u>Step 6: Act:</u> -- After buying the ticket/ booking the cab, one takes his/her seat (which is sometimes not available in the trains due to crowd/peak hours) and enjoys the ride till he/she reaches the destination

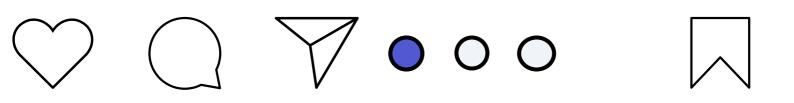
Data Analytics Process

Conclusions

Hence, we have seen how we can use the 6 steps of Data Analytics while making any decision in real life scenarios(finding the best transit route from Andheri to Panvel in our case)

The 6 steps used to take decisions in real life scenarios are:-

- Plan
- Prepare
- Process
- Analyze
- Share
- Act

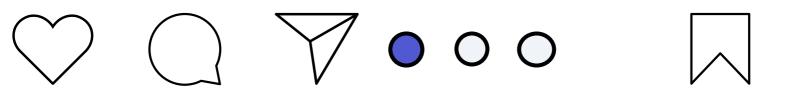


Description

User analysis is the process by which we track how users engage and interact with our digital product (software or mobile application) in an attempt to derive business insights for marketing, product & development teams.

These insights are then used by teams across the business to launch a new marketing campaign, decide on features to build for an app, track the success of the app by measuring user engagement and improve the experience altogether while helping the business grow.

You are working with the product team of Instagram and the product manager has asked you to provide insights on the questions asked by the management team.



<u>The Problem</u>

A) Marketing: The marketing team wants to launch some campaigns, and they need your help with the following

- Rewarding Most Loyal Users: People who have been using the platform for the longest time. <u>Your Task</u>: Find the 5 oldest users of the Instagram from the database provided
- Remind Inactive Users to Start Posting: By sending them promotional emails to post their 1st photo. <u>Your Task</u>: Find the users who have never posted a single photo on Instagram
- Declaring Contest Winner: The team started a contest and the user who gets the most likes on a single photo will win the contest now they wish to declare the winner. <u>Your Task</u>: Identify the winner of the contest and provide their details to the team
- Hashtag Researching: A partner brand wants to know, which hashtags to use in the post to reach the most people on the platform. <u>Your Task</u>: Identify and suggest the top 5 most commonly used hashtags on the platform
- Launch AD Campaign: The team wants to know, which day would be the best day to launch ADs. <u>Your Task</u>: What day of the week do most users register on? Provide insights on when to schedule an ad campaign

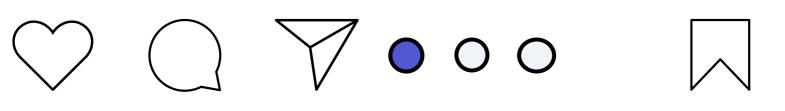
The Problem (Cont..)

B) Investor Metrics: Our investors want to know if Instagram is performing well and is not becoming redundant like Facebook, they want to assess the app on the following grounds

- User Engagement: Are users still as active and post on Instagram or they are making fewer posts <u>Your Task</u>: Provide how many times does average user posts on Instagram. Also, provide the total number of photos on Instagram/total number of users
- Bots & Fake Accounts: The investors want to know if the platform is crowded with fake and dummy accounts <u>Your</u> <u>Task</u>: Provide data on users (bots) who have liked every single photo on the site (since any normal user would not be able to do this).

9

 \bigcirc

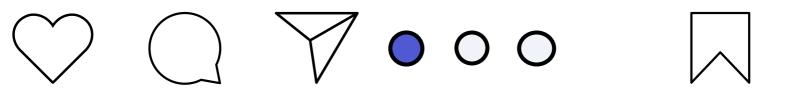

<u>Design</u>

Steps taken to load the data into the data base

- Using the 'create db' function of MySQL create a data base
- Then add tables and column names
- Then add the values into them using the 'insert into' function of MySQL
- By using the 'select' command we can query the desired output

Software used for querying the results

--> MySQL Workbench 8.0 CE


<u>Findings</u> - I

To find the most loyal i.e. the top 5 oldest users of Instagram: 1. We will use the data from the users table by selecting the username and created_at columns.

2. Then using the order by function we will order the desired output by sorting with the created_at column in ascending order.

3. Then using the limit function, the output will be displayed for top 5 oldest Instagram users.

username	created_at
Darby_Herzog	06-05-2016 00:14
Emilio_Bernier52	06-05-2016 13:04
Elenor88	08-05-2016 01:30
Nicole71	09-05-2016 17:30
Jordyn.Jacobson2	14-05-2016 07:56

<u>Findings</u> - II

To Find the most inactive users i.e. the users who have never posted a single photo on Instagram:

1. We will first select username column from the users table.

2. Then we will left join photos table on the users table, on users.id = photos.user_id because, both the users.id and photos.user_id have common contents in them.

3. Then we will find rows from the users table where the photos.id IS NULL

username	user_id
Aniya_Hackett	5
Kasandra_Homenick	7
Jaclyn81	14
Rocio33	21
Maxwell.Halvorson	24
Tierra.Trantow	25
Pearl7	34
Ollie_Ledner37	36
Mckenna17	41
David.Osinski47	45
Morgan.Kassulke	49
Linnea59	53
Duane60	54
Julien_Schmidt	57
Mike.Auer39	66
Franco_Keebler64	68

Output/Result

Nia_Haag	71
Hulda.Macejkovic	74
Leslie67	75
Janelle.Nikolaus81	76
Darby_Herzog	80
Esther.Zulauf61	81
Bartholome.Bernhard	83
Jessyca_West	89
Esmeralda.Mraz57	90
Bethany20	91

 \bigcirc

 \bigcirc

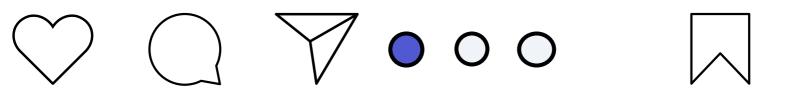
12

<u>Findings</u> - III

To find the most the username, photo_id, image_url and total_number_of_likes of that image:

1. First we will select the users.username, photos.id, photos.image_url and count(*) as total

2. Then, we will inner join the three tables wiz : photos, likes and users, on likes.photo_id = photos.id and photos.user_id = users.id


3. Then, by using group by function we will group the output on the basis of photos.id

4. Then, using order by function we will sorting the data on the basis of the total in descending order

5. Then, to find the most liked photo we will using limit function to view only the top liked photo's information

<u>Output/Result</u>

user_id	username	photo_id	image_url	total	
52	Zack_Kemmer93	145	https://jarret.name		48

Findings - IV

To find the top 5 most commonly used hashtags on Instagram:

1. We need to select the tag_name column from the tag table and the count(*) as total function so as to count the number of tags used individually.

2. Then, we need to join tags table and photo_tags table, on tags.id = photo_tags.tag_id cause they contain the same content in them i.e. tag_id

3. Then using the group by function we need to group the desired output on the basis of tags.tag_name

4. Then using the order by function we need to sort the output on the basis of total(total number of tags per tag_name) in descending order

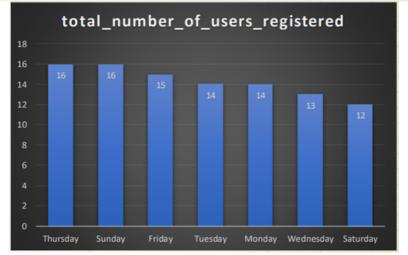
5. Then, to find the top 5 most used tag names we will use the limit 5 function.

Output/Result

tag_name	total_number_of_times_tag_used_individually
smile	59
beach	42
party	39
fun	38
concert	24

 \bigcirc

<u>Findings</u> - V


To find the day of week on which most users register on Instagram:

1. First we define the columns of the desired output table using select dayname(created_at) as day_of_week and count(*) as total_number_of_users_registered from the users table

2. Then using the group by function we group the output table on the basis of day_of_week

3. Then using the order by function we order/sort the output table on the basis of total_number_of_users_registered in descending order

day_of_week	total_number_of_users_registered
Thursday	16
Sunday	16
Friday	15
Tuesday	14
Monday	14
Wednesday	13
Saturday	12

<u>Findings</u> - VI

To find the how many times does average posts on Instagram: 1. First, we need to find first the count number of photos(posts) that are present in the photos.id column of the photos table i.e. count(*) from photos

2. Similarly, we need to find the number of users that are present in the users.id column of the users table i.e. count(*) from users

3. Next, we need to divide both the values i.e. count(*) from photos/count(*) from users and hence we would get the total number of photos / total number of users

4. To find how many times the users posts on Instagram we need to find the total occurrences of each user_id in photos table

Output/Result

total_photos_divide_total_photos 2.57

16

 \bigcirc

 \bigcirc

Instagram Instagram User Analytics

Findings - VI (Cont...)

user_post_count	30	2	62	2
5	31	1	63	4
4	32	4	64	5
4	33	5	65	5
3	35	2	67	3
5	37	1	69	1
4	38	2	70	1
4	39	1	72	5
3	40	1	73	1
5	42	3	77	6
4	43	5	78	5
5	44	4	79	1
4	46	4	82	2
4	47	5	84	2
3	48	1	85	2
1	50	3	86	9
2	51	5	87	4
1	52	5	88	11
1	55	1	92	3
12	56	1	93	2
5	58	8	94	1
1	59	10	95	2
4	60	2	96	3
8	61	1	97	2
	5 4 4 3 5 4 4 4 3 5 4 4 3 5 4 4 5 4 4 3 5 4 4 3 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	53143243333537374384393405424434434435444464473481502511551256558159460	5311432433523352335233523371438243913401542344354443554444475348150334551515515515588159104602	5 31 1 63 4 32 4 64 4 33 5 65 3 35 2 67 5 37 1 69 4 38 2 70 4 39 1 72 4 39 1 73 3 40 1 73 4 43 5 78 5 44 4 79 4 43 5 78 5 44 4 79 4 46 4 82 4 47 5 84 4 47 5 86 1 50 3 86 2 51 5 88 1 55 1 92 1 55 1 93 5 58 8 94 1 59 10 95 5 58 8 94 </td

98	1
99	3
100	2

17

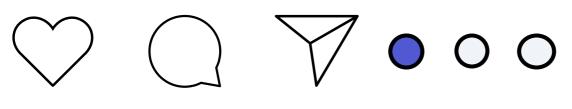
 \circ \circ \circ

<u>Findings</u> - VII

To find the bots and fake accounts :

1. First, we select the user_id column from the photos table

2. Then we select the username column from the users table


3. Then, we select the count(*) function to count total number of likes from the likes table

4. Then we inner join users and likes table on the basis of users.id and likes.user_id, using the on function/clause

5. Then by using the group by function we group the desired output table on the basis of likes.user_id

6. Then, we search for the values from the cout(*) from photos having equal values with the total_likes_per_user

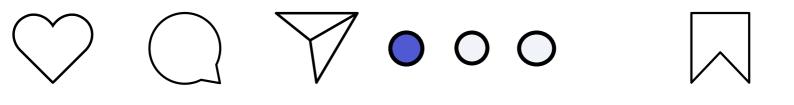
<u>Output/Result</u>		
user_id	username	total_likes_per_user
5	Aniya_Hackett	257
14	Jaclyn81	257
21	Rocio33	257
24	Maxwell.Halvorson	257
36	Ollie_Ledner37	257
41	Mckenna17	257
54	Duane60	257
57	Julien_Schmidt	257
66	Mike.Auer39	257
71	Nia_Haag	257
75	Leslie67	257
76	Janelle.Nikolaus81	257
91	Bethany20	257

Analysis

After performing the analysis I have the following points:-

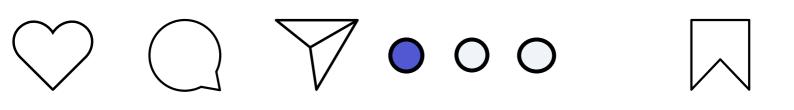
• The most loyal users i.e. the top 5 oldest users are:

username	created_at
Darby_Herzog	06-05-2016 00:14
Emilio_Bernier52	06-05-2016 13:04
Elenor88	08-05-2016 01:30
Nicole71	09-05-2016 17:30
Jordyn.Jacobson2	14-05-2016 07:56


- Out of the 100 total users there are 26 users who are inactive and they have never posted any kind of stuff of Instagram may it be any photo, video or any type of text. So, the Marketing team of Instagram needs to remind such inactive uers
- So, the user named Zack_Kemmer93 with user_id 52 is the winner of the contest cause his photo with photo_id 145 has the highest number of likes i.e. 48
- The top 5 most commonly used #hashtags along with the total count are smile(59), beach(42), party(39), fun(38) and concert(24)
- Most of the users registered on Thursday and Sunday i.e. 16 and hence it would prove beneficial to start AD Campaign on these two days
- So, there are in total 257 rows i.e. 257 photos in the photos table and 100 rows i.e. 100 ids in the users table which makes the desired output to be 257/100 = 2.57 (avg. users posts on Instagram)
- Out of the total user id's there are 13 such user id's who have liked each and every post on Instagram (which is not practically possible) and so such user id's are considered as BOTS and Fake Accounts

Using the 5 Whys approach I am finding the root cause of the following:-

- Why did the Marketing team wanted to know the most inactive users?
- --> So, they can reach out to those users via mail and ask them What's keeping them away from using the Instagram.
- Why did the Marketing team wanted to know the top 5 #hashtags used?
- --> May be the tech team wanted to add some filter features for photos and videos posted using the top 5 mentioned #hashtags
- Why did the Marketing team wanted to know on which day of the week the platform had the most new users registered?
- --> So, that they can run more Ads of various brands during such days and also get profit from it
- Why did the Investors wanted to know about the average posts per user has on Instagram?
- --> It is a fact that every brand or social platform is determined by the user engagement on such platforms, also investors wanted to know whether the platform has the right and authenticated user base. It also helps the tech team determine how to handle such traffic on the platform with the latest tech without disrupting the smooth and efficient functioning of the platform
- Why did the Investors wanted to know the count of BOTS and Fake accounts if any?
- --> So that the Investors are assured that they are investing into an Asset and not a Future Liability



Conclusion

In conclusion, I would like to conclude that not only Instagram but many other social media and commercial firms use such Analysis to find the insights from their customer data which in turn help the firms to find the customers who will be an Asset to the firm in the future and not some Liability.

Such Analysis and sorting of the customer base is done at an weekly, monthly, quarterly or yearly basis as per the needs of the business firms so as to maximize their profits in future with minimal cost to the company

00

Operation Analytics and Investigating Metric Spike

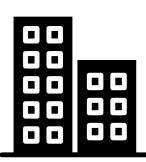
Description

Operation Analytics is the analysis done for the complete end to end operations of a company. With the help of this, the company then finds the areas on which it must improve upon. You work closely with the ops team, support team, marketing team, etc and help them derive insights out of the data they collect.

Being one of the most important parts of a company, this kind of analysis is further used to predict the overall growth or decline of a company's fortune. It means better automation, better understanding between cross-functional teams, and more effective workflows.

Investigating metric spike is also an important part of operation analytics as being a Data Analyst you must be able to understand or make other teams understand questions like- Why is there a dip in daily engagement? Why have sales taken a dip? Etc. Questions like these must be answered daily and for that its very important to investigate metric spike.

You are working for a company like Microsoft designated as Data Analyst Lead and is provided with different data sets, tables from which you must derive certain insights out of it and answer the questions asked by different departments.


00

00

00

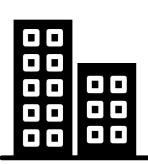
Operation Analytics and Investigating Metric Spike

<u>The Problem</u>

Case Study 1 (Job Data)

- Number of jobs reviewed: Amount of jobs reviewed over time.
- Your task: Calculate the number of jobs reviewed per hour per day for November 2020?
- Throughput: It is the no. of events happening per second.
- Your task: Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?
- Percentage share of each language: Share of each language for different contents.
- Your task: Calculate the percentage share of each language in the last 30 days?
- Duplicate rows: Rows that have the same value present in them.
- Your task: Let's say you see some duplicate rows in the data. How will you display duplicates from the table?

Case Study 2 (Investigating metric spike)


- User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.
- Your task: Calculate the weekly user engagement?
- User Growth: Amount of users growing over time for a product.
- Your task: Calculate the user growth for product?
- Weekly Retention: Users getting retained weekly after signing-up for a product.
- Your task: Calculate the weekly retention of users-sign up cohort?
- Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.
- Your task: Calculate the weekly engagement per device?
- Email Engagement: Users engaging with the email service.
- Your task: Calculate the email engagement metrics?

00

Operation Analytics and Investigating Metric Spike

<u>Design</u>

Steps taken to load the data into the data base

- Using the 'create db' function of MySQL create a data base
- Then add tables and column names
- Then add the values into them using the 'insert into' function of MySQL
- By using the 'select' command we can query the desired output

Software used for querying the results

--> MySQL Workbench 8.0 CE

Software used for analyzing using Bar plots

--> Microsoft Excel

To find the number of jobs reviewed per hour per day of November 2020:

1. We will use the data from job_id columns of the job_data table.

2. Then we will divide the total count of job_id (distinct and nondistinct) by (30 days * 24 hours)for finding the number of jobs reviewed per day

Output /Result

number_of_jobs_reviewed_per_day_non_distinct 0.0111

number_of_jobs_reviewed_per_day_distinct 0.0083

For calculating the 7-day rolling daily metric average of throughput:-

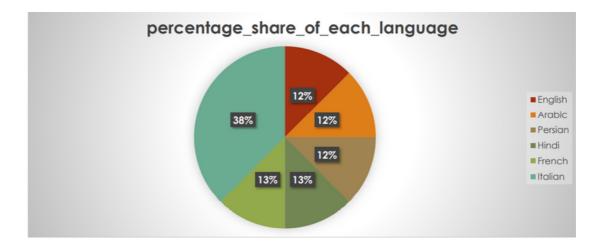
1. We will be first taking the count of job_id(distinct and non-distinct) and ordering them w.r.t ds (date of interview)

2. Then by using the ROW function we will be considering the rows between 6 preceding rows and the current row

3. Then we will be taking the average of the jobs_reviewed

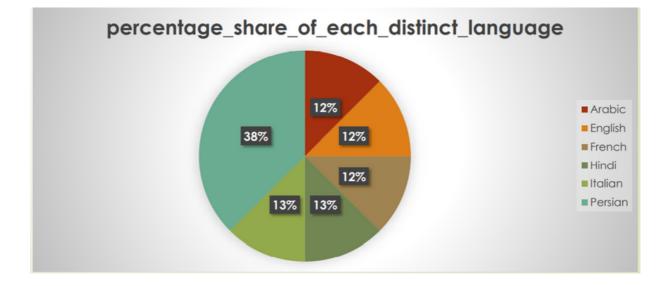
date_of_review	jobs_reviewed	throughput_7_rolling_average
25-11-2020	1	1
26-11-2020	1	1
27-11-2020	1	1
28-11-2020	2	1.25
29-11-2020	1	1.2
30-11-2020	2	1.3333

date_of_review	jobs_reviewed	throughput_7_rolling_average_non_distinct_job_id
25-11-2020	1	1
26-11-2020	1	1
27-11-2020	1	1
28-11-2020	2	1.25
29-11-2020	1	1.2
30-11-2020	2	1.3333


To Calculate the percentage share of each language (distinct and nondistinct):-

1. We will first divide the total number of languages (distinct/non-distinct) by the total number of rows presents in the table

total number of rows presents in the table


2. Then we will do the grouping based on the languages.

job_id	language	total_of_each_language	percentage_share_of_each_language
21	English	1	12.5
22	Arabic	1	12.5
23	Persian	3	37.5
25	Hindi	1	12.5
11	French	1	12.5
20	Italian	1	12.5

job_id	language	total_of_each_language	percentage_share_of_each_distinct_language
22	Arabic	1	12.5
21	English	1	12.5
11	French	1	12.5
25	Hindi	1	12.5
20	Italian	1	12.5
23	Persian	1	37.5

To view the duplicate rows having the same value we will:-

1. First decide in which do we need to find the duplicate row values

2. After deciding the column(parameter) we will use the ROW_NUMBER function to find the row numbers having the same value

3. Then we will portioning the ROW_NUMBER function over the column (parameter) that we decided i.e. job_id

4. Then using the WHERE function we will find the row_num having value greater than 1 i.e. row_num > 1 based on the occurrence of the job_id in the table

d	5	job_id	actor_id	event	language	time_spent	org	row_num
	28-11-2020	23	1005	transfer	Persian	22	D	2
	26-11-2020	23	1004	skip	Persian	56	А	3

To find the weekly user engagement:-

1. We will extract the week from the occurred_at column of the events table using the EXTRACT function and WEEK function

2. Then we will be counting the number of distinct user_id from the events table

3. Then we will use the GROUP BY function to group the output w.r.t week from occurred_at

<u>Output /Result</u>	week_number	number_of_users
	18	791
	19	1244
	20	1270
	21	1341
	22	1293
	23	1366
	24	1434
	25	1462
	26	1443
	27	1477
	28	1556
	29	1556
	30	1593
	31	1685
	32	1483
	33	1438
	34	1412
	35	1442

To find the user growth (number of active users per week):-

1. First we will the extract the year and week for the occurred_at column of the users table using the extract, year and week functions

2. Then we will group the extracted week and year on the basis of year and week number

3. Then we ordered the result on the basis of year and week number

4. Then we will find the cumm_active_users using the SUM, OVER and ROW function between unbounded preceding and current row

year_num	week_num	num_active_users	cum_active_users	year_num	week_num	num_active_users	cum_active_users
201			67	2013			
201			96	2013			
201			143	2013			
201			179	2013			
201	3 5	30	209	2013			
201			257	2013			
201			298	2013			
201			337	2013			
201			370	2014			
201			413	2014			
201			446	2014			
201			478	2014			
201			511	2014			
201			551	2014			
201	3 15	35	586	2014			
201			628	2014			
201			676	2014			
201	3 18	48	724	2014			
201			769	2014			
201			824	2014			
201	3 21	. 41	865	2014			
201	3 22	49	914	2014			
201			965	2014			
201				2014			
201			1062	2014			
201	3 26	57	1119	2014			
201			1176	2014			
201	3 28	52	1228	2014			
201			1299	2014			
201	3 30	66	1365	2014			
201	3 31	. 69	1434	2014			
201			1500	2014			
201	3 33	73	1573	2014			
201	3 34	70	1643	2014			
201	3 35	80	1723	2014			
201	3 36	65	1788	2014			
201	3 37	71	1859	2014			
201	3 38	84	1943	2014			
201	3 39	92	2035	2014			
201	3 40	81	2116	2014			
201	3 41	. 88	2204	2014			
201	3 42	74	2278	2014			
201			2375	2014	35	266	938
201	3 44	92	2467				

<u>Output /Result</u>

The weekly retention of users-sign up cohort can be calculated by two means i.e. either by specifying the week number (18 to 35) or for the entire column of occurred_at of the events table.

1. Firstly we will extract the week from occurred_at column using the extract, week functions

2. Then, we will select out those rows in which event_type = 'signup_flow' and event_name = 'complete_signup'

3. If finding for a specific week we will specify the week number using the extract function

4. Then using the left join we will join the two tables on the basis of user_id where event_type = 'engagement'

5. Then we will use the Group By function to group the output table on the basis of user_id

6. Then we will use the Order By function to order the result table on the basis of user_id

Output /Result

Google Drive Link for saved result (without specifying week number)

Trainity_task_3_case_stuy_2_question_c.csv -Google Drive

Output /Result

Google Drive Link for saved result (specifying week number as 18)

Trainity_task_3_case_stuy_2_question_c_18_week. csv - Google Drive

To find the weekly user engagement per device:-

1. Firstly we will extract the year_num and week_num from the occurred_at column of the events table using the extract, year and week function

2. Then we will select those rows where event_type = 'engagement' using the WHERE clause

3. Then by using the Group By and Order By function we will group and order the result on the basis of year_num, week_num and device

Output /Result

Google Drive link for saved result

question D weekly user engagement per device.csv - Google Drive

To find the email engagement metrics(rate) of users:-

1. We will first categorize the action on the basis of email_sent, email_opened and email_clicked using the CASE, WHEN, THEN functions

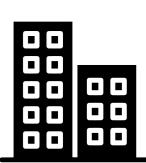
2. Then we select the sum of category of email_opened divide by the sum of the category of email_sent and multiply the result by 100.0 and name is as email_opening_rate

3. Then we select the sum of category of email_clicked divide by the sum of the category of email_sent and multiply the result by 100.0 and name is as email_clicking_rate

4. email_sent = ('sent_weekly_digest','sent_reengagement_email')

- 5. email_opened = 'email_open'
- 6. email_clicked = 'email_clickthrough'

Output /Result


email_opening_rate	email_clicking_rate
33.58338805	14.78988838

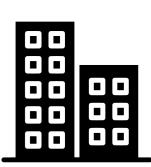
Operation Analytics and Investigating Metric Spike

From the tables and Bar plot I have infer the following:-

- number of distinct job reviewed per day is 0.0083
- number of non-distinct jobs reviewed per day is 0.0111
- 7 day rolling average throughput for 25, 26, 27, 28, 29 and 30 Nov 2020 are 1, 1, 1, 1.25, 1.2 and 1.3333 respectively(for both distinct and non-distinct)
- Percentage Share of each language i.e. Arabic, English, French, Hindi, Italian and Persian are 12.5, 12.5, 12.5, 12.5, 12.5 and 37.5 respectively(for both distinct and non-distinct)
- There are 2 duplicates values/rows having job_id = 23 and language = Persian in both the rows

Using the Why's approach I am trying to find more insights

- Why there is a difference of values between the number of distinct jobs reviewed per day and number of non-distinct jobs reviewed per day?
- ----> May be due to repeated values in two or more rows or the dataset consisted of duplicate rows
- Why one shall use 7 day rolling average for calculating throughput and not daily metric average?
- ----> For calculating the throughput we will be using the 7-day rolling because 7-day rolling gives us the average for all the days right from day 1 to day 7 Whereas daily metric gives us average for only that particular day itself.
- Why is it that percentage share of all other languages is 12.5% but that of language = 'Persian' is 37.5?
- ----> In such cases there are two chances i.e. either there were duplicate rows having language as 'Persian' or there were really two or more unique people who were speaking in Persian language
- Why do we need to look for duplicate rows in an dataset?
- ----> Duplicates have a direct influence of the Analysis going wrong and may led to wrong Business Decision leading to loss to the company or any entity; so to avoid these one must look for duplicates and remove them where necessary


00

00

Operation Analytics and Investigating Metric Spike

Analysis (Cont...)

From the tables and Bar plot I have infer the following:-

- The weekly user engagement is the highest for week 31 i.e. 1685
- There are in total 9381 active users from 1st week of 2013 to the 35th week of 2014
- The email_opening_rate is 33.5833 and email_clicking_rate is 14.78988

I have used the Why's approach to gain few more insights:-

- Why is the weekly user engagement so less in the beginning and then got increased?
- -----> It is a fact that for any new product or service launched, during it's initial period in the market it is less known to all people only some people use the product and based on their experience the product/service engagement increases or decreases depending on whether the consumer experience was good or bad. In this case since the user engagement increased after 2-3 weeks of the launch means that the consumer had a good experience with the product/service
- Why is weekly retention so important?
- ---> Weekly retention helps the firms to convince and help those visitors who just complete the sign-up or leave the sign-up process in between, such visitors may become customers in future if they are guided and convinced properly
- Why is weekly engagement per device plays an important role?
- ----> Based on the reviews from users weekly engagement per device helps the firms on which devices they must focus more and which devices need more improvements so they also get a good review in users weekly engagement per device
- Why is Email Engagement plays an important role?
- ----> Email Engagement helps the firms to decide the discounts and offers on specific products. In this case the email_opening_rate is 33.58 i.e. out of the 100 mails send only 34 mails were opened and the email_clicking_rate is 14.789 i.e. out of 100 mails opened only 15 mails were clicked for more details regarding the discount/product details. This means that the current firm needs to have some more catchy line for mails also the firm needs to do rigorous planning and deciding content before sending the mails

In Conclusion, I would like to conclude that Operation Analytics and Investigating Metric Spike are very necessary and they must be done on daily, weekly, Monthly, Quarterly or Yearly basis based on the Business needs of the firm.

Also, any firm/entity must focus on the Email Engagement with the customers; the firm must use catchy headings along with reasonable discounts and coupons so as to increase their existing customer base

Also any firm must have a separate department(if possible) so as to hear out to the problems of those Visitors who had left the Sign-up Process in between, the firm must guide them so as to convert them from Visitors to Customers

Description

Hiring process is the fundamental and the most important function of a company. Here, the MNCs get to know about the major underlying trends about the hiring process. Trends such as- number of rejections, number of interviews, types of jobs, vacancies etc. are important for a company to analyse before hiring freshers or any other individual. Thus, making an opportunity for a Data Analyst job here too!

Being a Data Analyst, your job is to go through these trends and draw insights out of it for hiring department to work upon.

You are working for a MNC such as Google as a lead Data Analyst and the company has provided with the data records of their previous hirings and have asked you to answer certain questions making sense out of that data.

<u>The Problem</u>

- Hiring: Process of intaking of people into an organization for different kinds of positions.
- Your task: How many males and females are Hired ?
- Average Salary: Adding all the salaries for a select group of employees and then dividing the sum by the number of employees in the group.
- Your task: What is the average salary offered in this company ?
- Class Intervals: The class interval is the difference between the upper class limit and the lower class limit.
- Your task: Draw the class intervals for salary in the company ?
- Charts and Plots: This is one of the most important part of analysis to visualize the data.
- Your task: Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department ?
- Charts: Use different charts and graphs to perform the task representing the data.
- Your task: Represent different post tiers using chart/graph?

<u>Design</u>

Before starting the actual analysis I have:-

- Firstly I made a copy of the raw data where I can perform the Analysis so that what ever changes I made it will not affect the original data
- Secondly I looked for blank spaces and NULL values if any.
- Then I had imputed the numerical blank and NULL cells with mean of the column(if no outliers existed for that particular column) or with median (if outliers existed for that column)
- Then I looked for if any outliers exists and replaced them with the median of the particular column where the outlier existed
- Then for blank cells of categorical variables I had replaced with the variable with the highest count
- Then I looked for duplicate rows and removed them if any
- Then I removed the irrelevant columns(data) from the dataset which was not necessary for doing the analysis

Software used for doing the overall Analysis:-----> Microsoft Excel

Findings - I

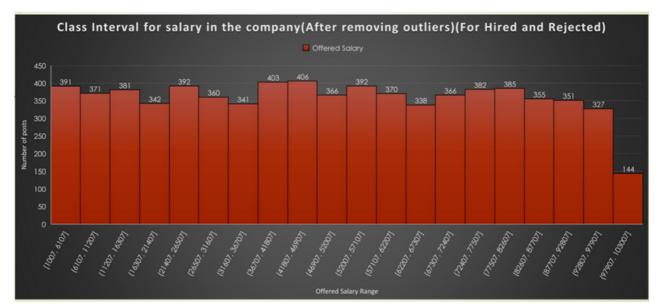
From the above table and bar plot I have inferred that:-

- There are 2563 Males hired for different roles in the company
- While there are only 1855 Females hired for different roles in the company

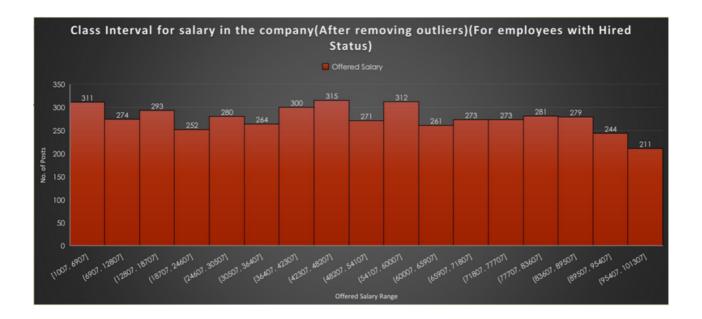
<u>Findings</u> - II

To find the average salary offered in this company:-1. First, we need to remove the outliers i.e. to remove the salaries below 1000 and above 100000

2. Then using the formula =AVERAGE(entire_column_of_salary_after_removing_outliers)

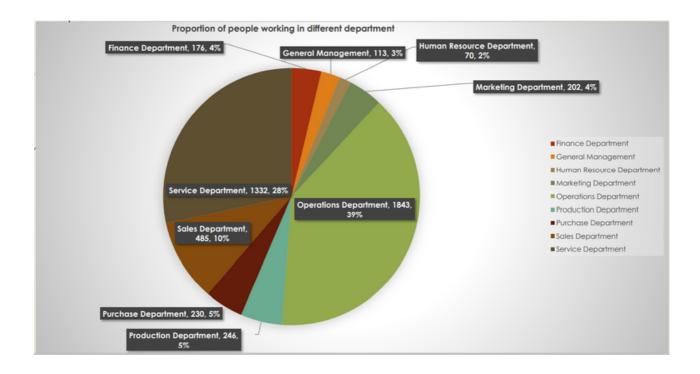

Output/Result

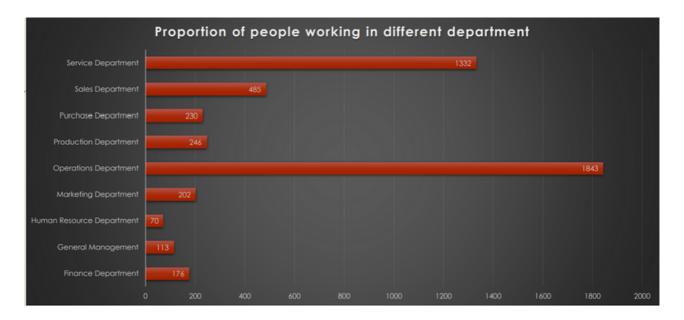
49983.03223



<u>Findings</u> - III

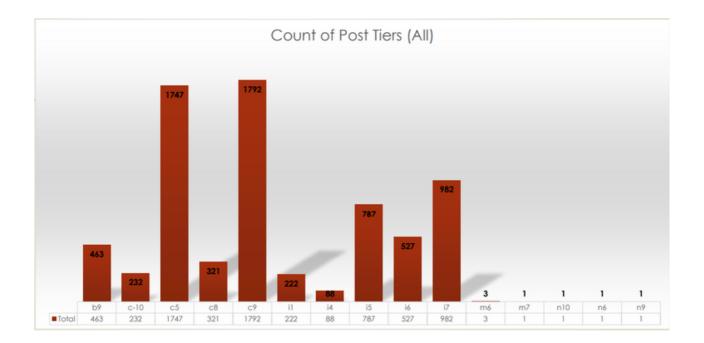
From the above Bar plot I have inferred that the highest number of posts (both hired and rejected) is 406 for the salary range 41807 to 46907

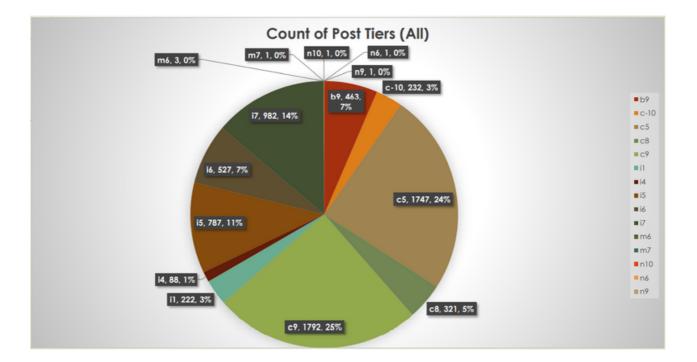

From the above Bar plot I have inferred that the highest number of posts (hired) is 315 for the salary range 42307 to 54107


Findings - IV

Description	Charles .	
Department	Status	Count of Department
Finance Department		176
General Management		113
Human Resource Department		70
Marketing Department		202
Operations Department		1843
Production Department		246
Purchase Department		230
Sales Department		485
Service Department		1332

Findings - IV (Cont...)


From the above table, pie chart and Bar Plot I have inferred that the Highest number of people were working in the Operations Department i.e. 1843 which accounts for almost 39% of the total workforce of the company



<u>Findings</u> - V

Post Name	Status	Count of Post Tiers (All)
b9		463
c-10		232
c5		1747
c8		321
c9		1792
ii		222
i4		88
i5		787
ió		527
17		982
mó		3
m7		1
n10		1
nó		1
n9		1

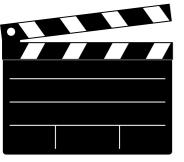
From the above table, Bar plot and Pie chart I have inferred that the c9 post has the highest number of openings i.e. 1792 which accounts for 25% of the total job openings of the company/firm

<u>Analysis</u>

Using the Why's approach I am trying to find some more insights:-

- Why is there so much difference in the total number of Males and Females hired?
- ---> Since, the Company is an MNC and people from all around the world work here; such difference exists due to the fact that the men-women equality has not yet reached to each and every part of the world. Some regions in the Gulf countries and in African continents along with some Asian countries face this problem
- Why is it that there are less number of people who have salaries more than 85000 and there are more number of people who have salaries 35000 to 60000?
- ----> It is a fact that there are some positions in company who require a specialist person with years of experience in that particular field of work and hence company looks for such people and offer them higher salary packages also such people regularly prove themselves an asset to the company. For any company there are more people having the salary in the range 35000 to 60000; such people have spent 3-4 years in the company and their salary and increments are decided based on their monthly, quarterly and yearly performance.
- Why is that the Operations department has the highest number of people working?
- ----> Operations Department works like a central hub for all other departments, all the execution tasks are carried out by this department. Operations department has the highest work load when compared to all other departments

Conclusion

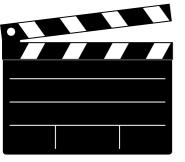

In the conclusion part, I would like to conclude that Hiring Process Analytics plays an important part for all the companies and firms to decide the job openings for the near future.

Hiring Process Analytics is done on monthly, quarterly or yearly basis as per the needs and policies of the companies

For any company the Operations Department has the highest number of workforce due to the workload on this department as this department acts as a central hub for all the executive tasks carried out

For any company there will some employees who have high salary packages compared to other employees, and this is due to the fact that they have some special skills and years of experience in their particular field of work

Hiring Process Analytics helps the company to decide the salaries for new freshers joining the company; also it tells requirement of workforce by each department; it also helps the company decide the appraisals and increment for it's current employess

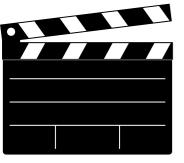

<u>Description</u>

IMDB Movie Analysis

You are provided with dataset having various columns of different IMDB Movies. You are required to Frame the problem.

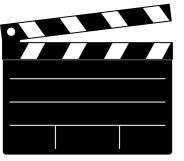
For this task, you will need to define a problem you want to shed some light on.

Once you have defined a problem, clean the data as necessary, and use your Data Analysis skills to explore the data set and derive insights.



<u>The Problem</u>

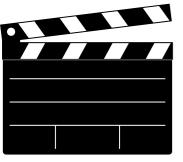
- Movies with highest profit: Create a new column called profit which contains the difference of the two columns: gross and budget. Sort the column using the profit column as reference. Plot profit (y-axis) vs budget (x- axis) and observe the outliers using the appropriate chart type.
- Your task: Find the movies with the highest profit?
- Top 250: Create a new column IMDb_Top_250 and store the top 250 movies with the highest IMDb Rating (corresponding to the column: imdb_score). Also make sure that for all of these movies, the num_voted_users is greater than 25,000. Also add a Rank column containing the values 1 to 250 indicating the ranks of the corresponding films.
- Extract all the movies in the IMDb_Top_250 column which are not in the English language and store them in a new column named Top_Foreign_Lang_Film. You can use your own imagination also!
- Your task: Find IMDB Top 250
- Best Directors: Group the column using the director_name column. Find out the top 10 directors for whom the mean of imdb_score is the highest and store them in a new column top10director. In case of a tie in IMDb score between two directors, sort them alphabetically.
- Your task: Find the best directors
- Popular Genres: Perform this step using the knowledge gained while performing previous steps.
- Your task: Find popular genres



The Problem (Cont...)

- Charts: Create three new columns namely, Meryl_Streep, Leo_Caprio, and Brad_Pitt which contain the movies in which the actors: 'Meryl Streep', 'Leonardo DiCaprio', and 'Brad Pitt' are the lead actors. Use only the actor_1_name column for extraction. Also, make sure that you use the names 'Meryl Streep', 'Leonardo DiCaprio', and 'Brad Pitt' for the said extraction.
- Append the rows of all these columns and store them in a new column named Combined.
- Group the combined column using the actor_1_name column.
- Find the mean of the num_critic_for_reviews and num_users_for_review and identify the actors which have the highest mean.
- Observe the change in number of voted users over decades using a bar chart. Create a column called decade which represents the decade to which every movie belongs to. For example, the title_year year 1923, 1925 should be stored as 1920s. Sort the column based on the column decade, group it by decade and find the sum of users voted in each decade. Store this in a new data frame called df_by_decade.
- Your task: Find the critic-favorite and audience-favorite actors

<u>Design</u>


1 . Firstly I made a copy of the raw data where I can perform the Analysis so that what ever changes I made it will not affect the original data

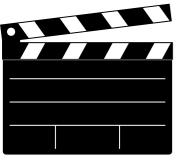
2. Then dropping the columns which have no use for the analysis that we will be doing

3. Columns like 'Color', 'director_facebook_likes', 'actor_3_facebook_likes, 'actor_2_name', 'actor_1_facebook_likes', 'cast_total_facebook_likes, 'actor_3_name', 'facenumber_in_posts', 'plot_keywords', 'movie_imdb_link', 'content_rating' ,'actor_2_facebook_likes', 'aspect_ratio', 'movie_facebook_likes' are the columns containing irrelevant data for the analysis tasks provided. So, these columns needs to be dropped.

4. After dropping the irrelevant columns now we need to remove the rows from the dataset having anyone of its column value as blank/NULL

5. Then we need to get rid off the duplicate values in the dataset which can be achieved by using the 'Remove Duplicate Values/Cells' available in the 'Data' tab

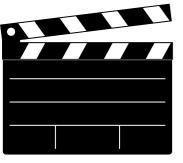
<u>Findings</u> - I


To find the movies with the highest profit: -

1. First we need to subtract the budget value from the gross value to get the profit.

2. Then, by using the scatter plot option we will plot values of profit(y_axis) and budget(x_axis)

3. Then with the help of graph we will be finding the outliers



Findings - I(Cont...)

director_name	num_critic _for_revie ws		genres	actor_1_name	movie_title	num_voted		language		content _rating		title_year	imdb_sc ore	Profit
James Cameron	723		Action Adventure Fantasy Sci-Fi	CCH Pounder	AvatarÅ	886204	3054	English	USA	PG-13	237000000	2009	7.9	523505847
Colin Trevorrow	644		Action Adventure Sci-Fi Thriller	Bryce Dallas Howard	Jurassic WorldÂ	418214	1290	English	USA	PG-13	150000000	2015	7	502177271
James Cameron	315	658672302	Drama Romance	Leonardo DiCaprio	TitanicÂ	793059	2528	English	USA	PG-13	200000000	1997	7.7	458672302
George Lucas	282		Action Adventure Fantasy ScI-FI	Harrison Ford	Star Wars: Episode IV - A New HopeÂ	911097	1470	English	USA	PG	11000000	1977	8.7	449935665
Steven Spielberg	215				E.T. the Extra-TerrestrialÅ	281842				PG	10500000			424449459

After removing the outliers, from the above table I have inferred that 'Avatar' was the highest profit making movie ever with a profit of 523505847

<u>Findings</u> - II

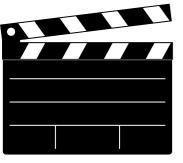
To find the IMDB Top 250 we will:-

1. First we will filter out those rows whose num_voted_users > 25000 using the sort and filter option

2. Then we will arrange the dataset on the basis of imdb_score in descending order

3. Then we will select only the top 250 rows for the further analysis

4. Then we will create a new column rank using the RANK() function and using the formula

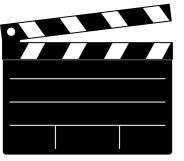

=RANK(N2,\$N\$2:\$N\$251,0)+COUNTIFS(\$N\$2:N2,N2)-1

5. Then we will filter out (unselect 'English') from the language column and we will get the desired output

Top - 5 IMDB Movies all languages

	num_cri						num_user							
director name	tic_for_r eviews		genres	actor 1 name	movie title	num voted users	_for_revie	language		content_ra ting		title vear	imdb score	Rank
Frank Darabont	199	28341469	Crime Drama	Morgan Freeman	The Shawshank RedemptionÅ	1689764	4144	English	USA	R	2500000	1994	9.3	1
Francis Ford Coppola	208	134821952	Crime Drama	Al Pacino	The GodfatherÂ	1155770	2238	English	USA	R	6000000	1972	92	
Christopher Nolan			Action Crime Drama		The Dark KnightÂ	1676169				PG-13	185000000	2008		3
Francis Ford Coppola	149				The Godfather: Part IIÂ	790926			USA	R	13000000	1974		
Peter Jackson	328		Action Adventure Dra ma Fantasy	Orlando Bloom	The Lord of the Rings: The Return of the KingÂ	1215718			USA	PG-13	94000000	2003	8.9	5

From the above table I have inferred that 'The Shawshank Redemption' had the highest IMDB ratings



Findings - II (Cont...)

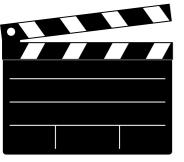
Top - 5 IMDB Movies all languages (except English)

	<u> </u>											_		
director name	num_critic _for_review			actor 1 name			num_user_for_ reviews			content_ra		title_	and because	Rank
director_name	9	gross	genres	actor_1_name	movie_ime	users	reviews	language	country	ting	budget	year	imdb_score	Kank
Sergio Leone	181	6100000	Western	Clint Eastwood	The Good, the Bad and the UglyÅ	503505	780	Italian	Italy	Approved	1200000	1966	8.9	
Fernando Meirelles	214	7563397	Crime Drama	Alice Braga	City of GodÂ	533200	749	Portuguese	Brazil	R	3300000	2002	8.7	15
Akira Kurosawa	153		Action Adventure Drama	Takashi Shimura	Seven SamuraiÂ	229012	596	Japanese	Japan	Unrated	2000000	1954	8.7	20
Hayao Miyazaki	246		Adventure Animati on Family Fantasy		Spirited AwayÂ	417971	902	Japanese	Japan	PG	19000000	2001	8.6	2
Florian Henckel														
von Donnersmarck	215	11284657	Drama Thriller	Sebastian Koch	The Lives of OthersÅ	259379	407	German	Germany	R	2000000	2006	8.5	4

From the above table I have inferred that the movie 'The Good, the Bad and the Ugly' had the highest IMDB ratings w.r.t movies with all other languages (except English); it's country of origin in Itlay

<u>Findings</u> - III

To find the best top 10 directors on the basis of mean of imdb_score we will:-


- 1. First select the imdb_score column of the cleaned dataset
- 2. Then we will click on pivot table
- 3. We will add director_name into the series section of the pivot table

4. Then we will add average imdb_score into the values section of the pivot table

5. Then we will first sort the data on the basis of average of imdb_score in descending order and then on the basis of director name alphabetically

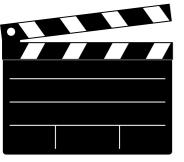
Top 10 director having the highest IMDB mean					
Director Name	mean of Imdb Score				
Charles Chaplin	8.6				
Tony Kaye	8.6				
Alfred Hitchcock	8.5				
Damien Chazelle	8.5				
Majid Majidi	8.5				
Ron Fricke	8.5				
Sergio Leone	8.433333333				
Christopher Nolan	8.425				
Asghar Farhadi	8.4				
Marius A. Markevicius	8.4				

From the above table I have inferred that Charles Chaplin and Tony Kaye had the highest mean of IMDB Score i.e. 8.6

<u>Findings</u> - IV

To find the Popular Genres we will:-

1. First select the genres column of the cleaned dataset


2. Then we will go for the pivot table option

3. Then we will Select the genres name as row labels

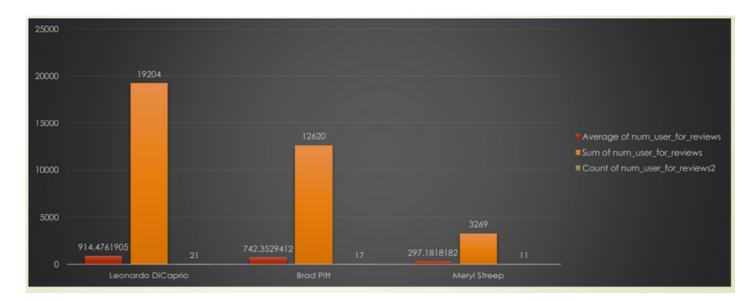
4. Then we will the values as the count of the number of genres and then sort it in descending order on the basis of count of the number of genres

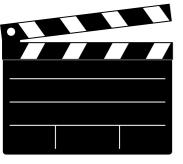
Top 10 Popular genres are:-	
Genre name	count
Drama	153
Comedy Drama Romance	151
Comedy Drama	147
Comedy	145
Comedy Romance	135
Drama Romance	119
Crime Drama Thriller	82
Action Crime Thriller	55
Action Crime Drama Thriller	50
Action Adventure Sci-Fi	46

From the above table I have inferred that genre named 'Drama' was the most popular with a count of 153

<u>Findings</u> - V

To find the critic-favorite and audience-favorite actors we will:-

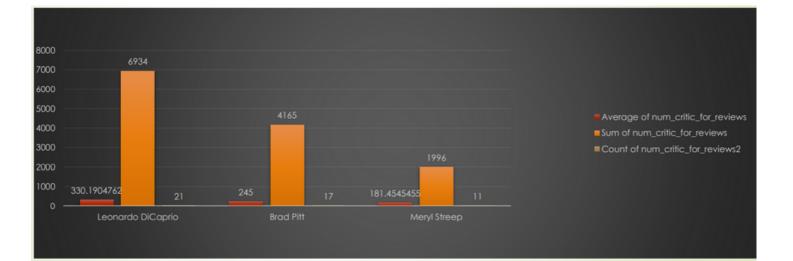

1. First three new columns namely, Meryl_Streep, Leo_Caprio, and Brad_Pitt which contain the movies in which the actors: 'Meryl Streep', 'Leonardo DiCaprio', and 'Brad Pitt' are the lead actors from the actor_1_name column

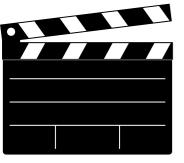

2. Then we will append the above 3 created columns into 1 column named actor_1_name_combine

3. Then we will group the 3 columns of critic-favorite and audience-favorite actors

4. Then using the pivot table we will find the average, sum and count of critic favorite and audience-favorite actors

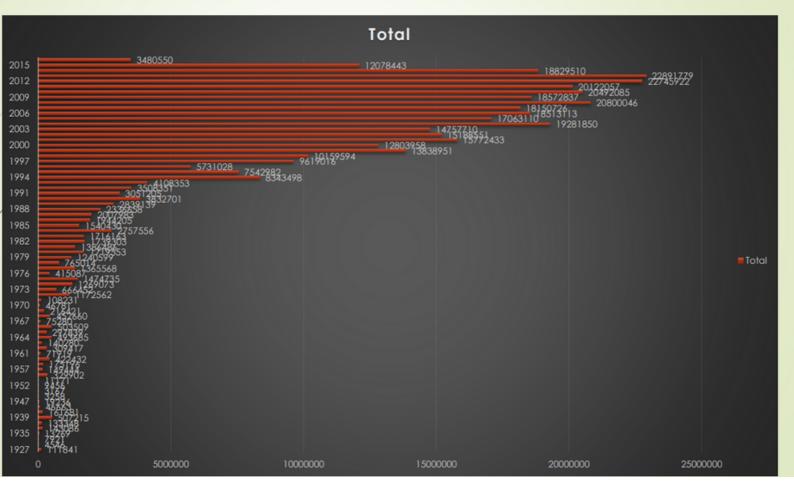
Row Labels	Average of num_user_for_reviews	Sum of num_user_for_reviews	Count of num_user_for_reviews2
Leonardo DiCaprio	914.4761905	19204	21
Brad Pitt	742.3529412	12620	17
Meryl Streep	297.1818182	3269	11
Grand Total	716.1836735	35093	49

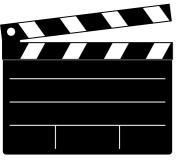




Findings - V(Cont..)

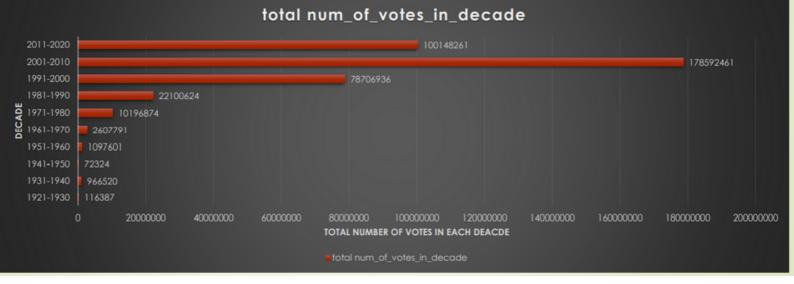
Row Labels	Average of num_critic_for_reviews	Sum of num_critic_for_reviews	Count of num_critic_for_reviews2
Leonardo DiCaprio	330.1904762 6934		21
Brad Pitt	245	4165	17
Meryl Streep	181.4545455	1996	11
Grand Total	267.244898	13095	49

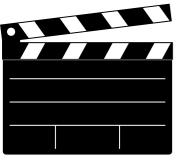

From the above two graphs I have inferred that 'Leonardo DiCaprio' was both critic-favorite and audiencefavorite



Findings - VI

Change in number of voted users over decades using a bar chart

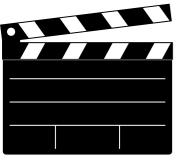



Findings - VI (Cont..)

Change in number of voted users over decades using a bar chart

Decade	total num_of_votes_in_decade
1921-1930	116387
1931-1940	966520
1941-1950	72324
1951-1960	1097601
1961-1970	2607791
1971-1980	10196874
1981-1990	22100624
1991-2000	78706936
2001-2010	178592461
2011-2020	100148261
Total	394605779

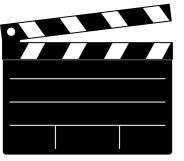
From the above table and Bar plot I have inferred that most number of votes were in the decade 2001-2010 with a count of 178592461



<u>Analysis</u>

Using the Why's approach I am trying to find some useful insights

- Why is it that the Most rated IMDB movie and the highest profit movie not the same?
- ----> Maybe, due to fact that during the IMDB rating only recognized and people who know how to vote on IMDB have the access to the IMDB portal. On the other hand the profit is calculated on the basis of the tickets sold in theatres worldwide.
- Why there are more number of votes during the decade 2001-2010?
- ----> The period 2001-2010 saw many scientific advancements and computer graphics advancement, also during this interval there was a splendid increase in the production of movies all over the world, so huge number of movies were produced and released during this decade. Also before 2000 there were no laws around the world that had a separate ministry/board/committee from the Government side that looked into the matters of film production and release
- Why is it that only movies having language as 'English' are the top 5 ranked movies on the basis of IMDB?
- ----> Movies having language as English were having country of origin as USA; Also it is a well known fact that USA economy was robust during those days. So the social media investors looked for directors made movies so as to gain some financial gains



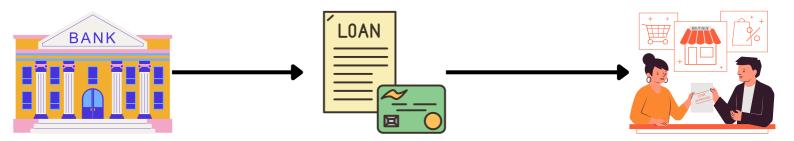
<u>Analysis</u> (Cont..)

- Why is it that only Drama and Comedy had the highest popularity?
- ----> Most of people all over the world are stressed with their work life so they need a relaxing refreshment and not some action or horror type thing. So people prefer watching movies that were of Comedy or Drama genre or both. But, most of them preferred Comedy genre films
- Why is it that there were more number of votes for the decade 2001-2010 than compared to 2011-2020, though there was advancement in graphics and animation during 2011-2020?
- ----> It is a fact that there was a great and immense growth of technology not only in the graphics and animation sector but in all aspects of life; Also it was during this interval VPN was introduced; VPN led to piracy (illegal distribution of film) due to which most of people avoided going to theatres.

Conclusion

IMDB Movie Analysis

In Conclusion, I would like to conclude that IMDB Movie Analysis or any such analysis is done not only by Movie makers before movie production, but it is also done by various investors, stakeholders, theatre outlet owners.


Normal people would not mind to do such analysis but such analysis plays an crucial part during the pre-production phase of the movies and also during the post-production phase

Also, it is not necessary that the movie with the highest IMDB rating will have the highest profit.

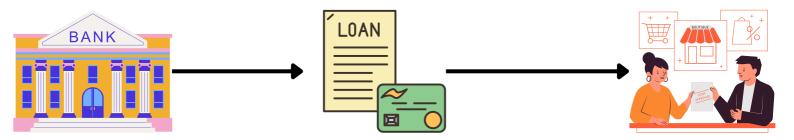
Profit is calculated truly on the basis on the number of tickets sold by theatres all over the world

Most of the people are tired with their daily lives and they prefer movies with Comedy/ Drama genre or both, and they would not go for movies with Action/Horror genre

So, directors and production team must keep in mind the above points and shall do the pre-production analysis before the commencement of filming

Bank Loan Case Study

Description

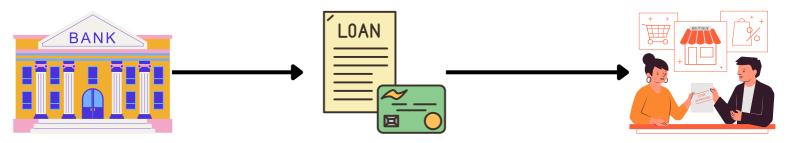

The loan providing companies find it hard to give loans to the people due to their insufficient or non-existent credit history. Because of that, some consumers use it as their advantage by becoming a defaulter. Suppose you work for a consumer finance company which specializes in lending various types of loans to urban customers. You have to use EDA to analyze the patterns present in the data. This will ensure that the applicants capable of repaying the loan are not rejected.

When the company receives a loan application, the company has to decide for loan approval based on the applicant's profile. Two types of risks are associated with the bank's decision:

- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company.
- If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company.

When a client applies for a loan, there are four types of decisions that could be taken by the client/company:

- 1 Approved: The company has approved loan application
- 2. Cancelled: The client cancelled the application sometime during approval. Either the client changed her/his mind about the loan or in some cases due to a higher risk of the client he received worse pricing which he did not want.
- 3. Refused: The company had rejected the loan (because the client does not meet their requirements etc.).
- 4. Unused Offer: Loan has been cancelled by the client but on different stages of the process.

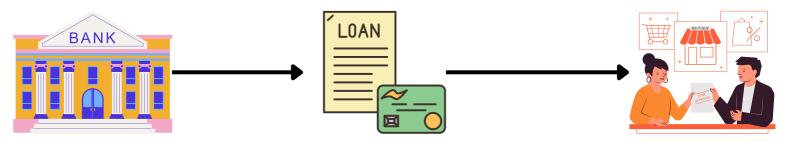

<u>The Problem</u>

This case study aims to give you an idea of applying EDA in a real business scenario. In this case study, apart from applying the techniques that you have learnt in the EDA module, you will also develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimize the risk of losing money while lending to customers.

It aims to identify patterns which indicate if a client has difficulty paying their installments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc. This will ensure that the consumers capable of repaying the loan are not rejected. Identification of such applicants using EDA is the aim of this case study.

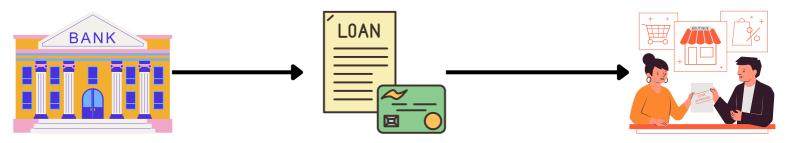
In other words, the company wants to understand the driving factors (or driver variables) behind loan default, i.e. the variables which are strong indicators of default. The company can utilize this knowledge for its portfolio and risk assessment.

To develop your understanding of the domain, you are advised to independently research a little about risk analytics – understanding the types of variables and their significance should be enough).


<u>Design</u>

Firstly create a copy of the raw data

Then the percentage of null values needs to be analyzed and those columns that have more than 50% of the null data have to be dropped And those columns with less than 50% of the null data have to be replaced with mean or median or the highest occurring categorical variables.


The following columns needs o be dropped as they have more than 50% of the NULL values

- OWN_CAR_AGE
- EXT_SOURCE_1
- APARTMENTS_AVG
- BASEMENTAREA_AVG
- YEARS_BUILD_AVG
- COMMON_AREA_AVG
- ELEVATORS_AVG
- ENTRANCES_AVG
- FLOORSMAX_AVG
- FLOORSMIN_AVG
- LANDAREA_AVG
- LIVINGAPARTMENTS_AVG
- LIVINGAREA_AVG
- NONLIVINGAPARTMENTS_AVG
- NONLIVINGAREA_AVG
- APARTMENTS_MODE
- BASEMENTAREA_MODE
- YEARS_BUILD_MODE
- COMMON_AREA_MODE
- ELEVATORS_MODE
- ENTRANCES_MODE
- FLOORSMAX_MODE
- FLOORSMIN_MODE

<u>Design</u> (Cont...)


- LANDAREA_MODE
- LIVINGAPARTMENTS_MODE
- LIVINGAREA_MODE
- NONLIVINGAPARTMENTS_MODE
- NONLIVINGAREA_MODE
- APARTMENTS_MEDIAN
- BASEMENTAREA_MEDIAN
- YEARS_BUILD_MEDIAN
- COMMON_AREA_MEDIAN
- ELEVATORS_MEDIAN
- ENTRANCES_MEDIAN
- FLOORSMAX_MEDIAN
- FLOORSMIN_MEDIAN
- LANDAREA_MEDIAN
- LIVINGAPARTMENTS_MEDIAN
- LIVINGAREA_MEDIAN
- NONLIVINGAPARTMENTS_MEDIAN
- NONLIVINGAREA_MEDIAN
- FONDKAPREMONT_MODE
- HOUSETYPE_MODE
- WALLSMATERIAL_MODE

<u>Design</u> (Cont...)

Then drop those columns which are irrelevant for doing the Data Analysis. The following columns needs to be dropped:-

- FLAG_MOBILE
- FLAG_EMPLOY_PHONE
- FLAG_WORK_PHONE
- FLAG_CONT_MOBILE
- FLAG_PHONE
- FLAG_EMAIL
- CNT_FAMILY_MEMBERS
- REGION_RATING_CLENT
- REGION_RATING_CLENT_W_CITY
- EXT_SOURCE_3
- YEAR_BEGINEXPLUATATION_AVG
- YEAR_BEGINEXPLUATATION_MODE
- YEAR_BEGINEXPLUATATION_MEDIAN
- TOTAL_AREA_MODE
- EMERGENCYSTATE_MODE
- DAYS_LAST_PHONE_CHANGE
- FLAG DOC 2
- FLAG DOC 3
- FLAG DOC 4
- FLAG DOC 5
- FLAG DOC 6
- FLAG DOC 7
- FLAG DOC 8
- FLAG DOC 9
- FLAG DOC 10
- FLAG DOC 11
- FLAG DOC 12

<u>Design</u> (Cont...)


- FLAG DOC 13
- FLAG DOC 14
- FLAG DOC 15
- FLAG DOC 16
- FLAG DOC 17
- FLAG DOC 18
- FLAG DOC 19
- FLAG DOC 20
- FLAG DOC 21

Replacing Blanks in Occupation_Type column of the Application Dataset with the highest occurring categorical variable --> Highest occurring categorical variable is 'Laborers'

Replacing Blanks in AMT_ANNUTIY column of the Application Dataset with the median of the AMT_ANNUITY as there exists outliers in the AMT_ANNUITY column --> Median of AMT_ANNUITY = 24903

Replacing Blanks in AMT_GOODS_PRICE column of the Application Dataset with the median of the AMT_GOODS_PRICE as there exists outliers in the AMT_GOODS_PRICE column --> Median of AMT_GOODS_PRICE = 450000

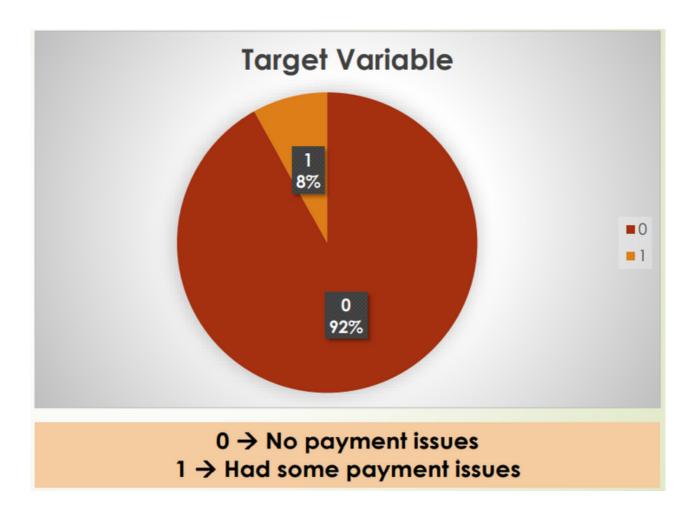
Replacing Blanks in Name_Type_Suite column of the Application Dataset with the highest occurring categorical variable --> Highest occurring categorical variable is 'Unaccompanied'

<u>Design</u> (Cont...)

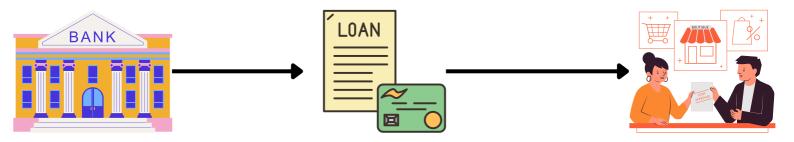
Replacing Blanks in Organization_type column of the Application Dataset with the highest occurring categorical variable --> Highest occurring categorical variable is 'Business Entity Type 3'

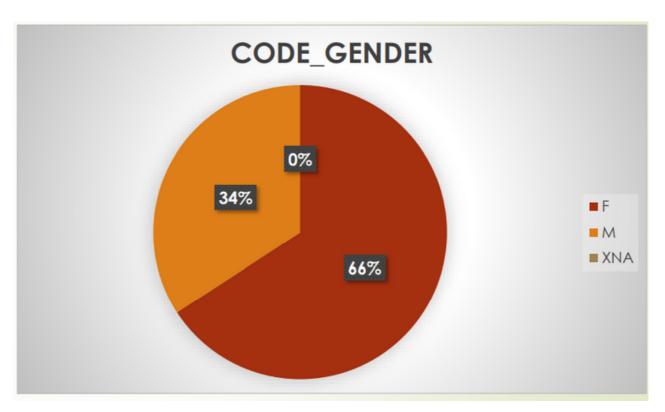

The following columns of the previous application datasets need to be dropped as they are irrelevant for doing the data analysis

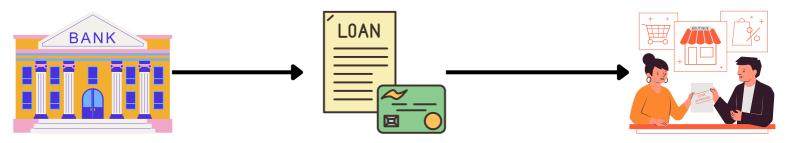
- HOUR_APPR_PROCESS_START
- WEEKDAY_APPR_PROCESS_START_PREV
- FLAG_LAST_APPL_PER_CONTRACT
- NFLAG_LAST_APPL_IN_DAY
- SK_ID_CURR
- WEEKDAY_APPR_PROCESS_START

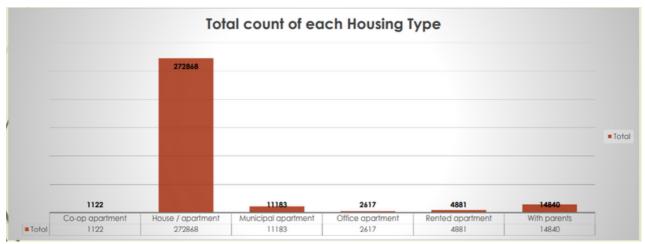

Removing the rows with the values 'XNA' &'XAP' for the column: NAME_TYPE_SUITE

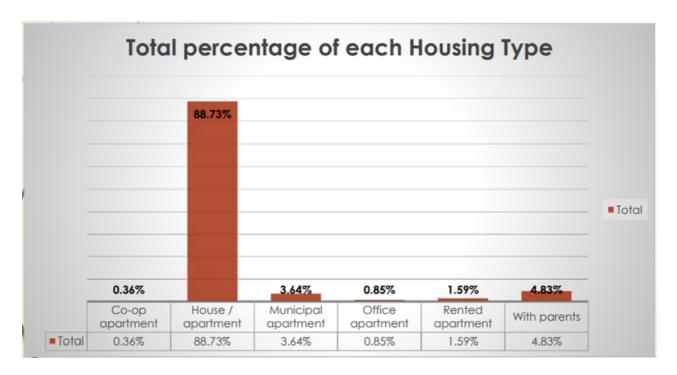
----> Replace Blanks with Unaccompained


AMT_ANNUITY :- Replace Blanks with 21340(median)

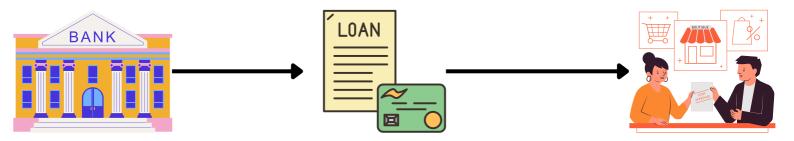

<u>Findings</u> - I


The Target Variable Pie chart shows that almost 92% of the total clients had no problem during payment while 8% of the clients had some or the other problem

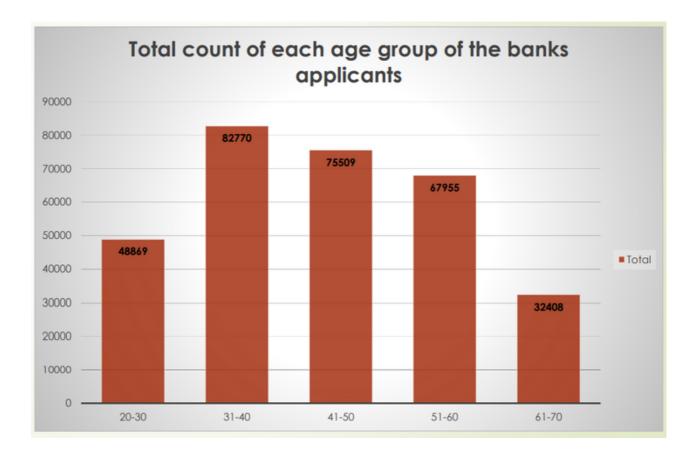

<u>Findings</u> - II

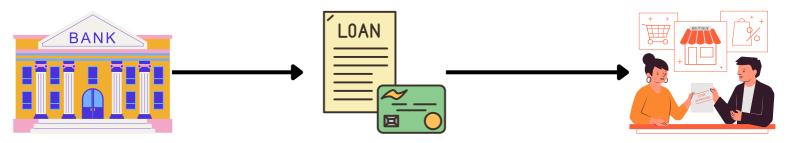


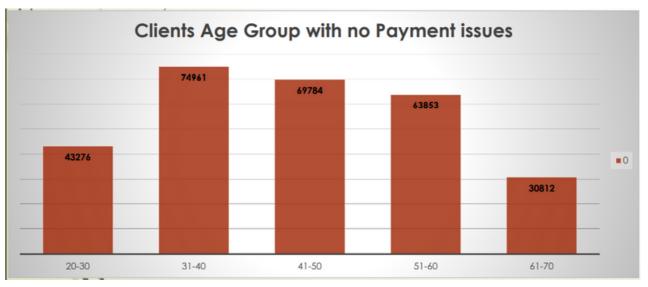
From the GENDER_VARIABLE pie chart we can infer that almost 66% of the clients are female and 34% of the clients are Male. The 0% of the applicants have gender as XNA which can be ignored

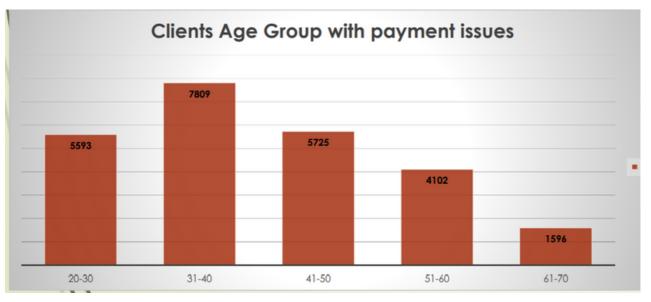


<u>Findings</u> - III

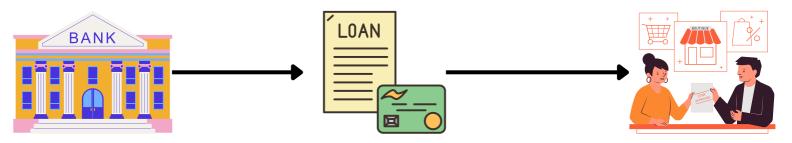



From the bar graphs of count and percentage The bank can target those groups who do not have their own apartment i.e. the bank may consider the people living in Co-op apartment, Municipal Apartment, Rented Apartment and people living with their parents

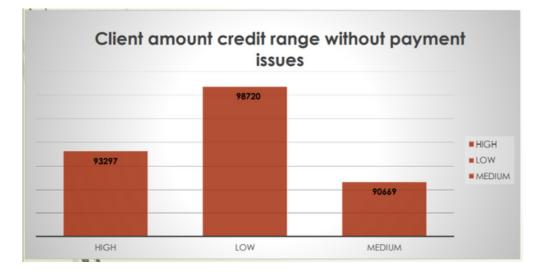

<u>Findings</u> - IV

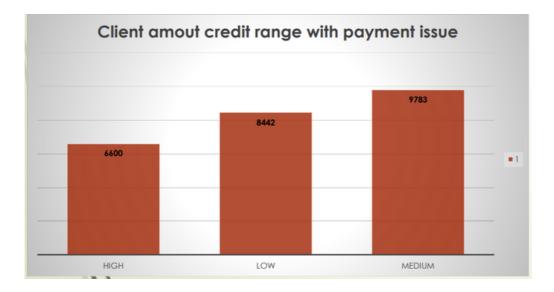


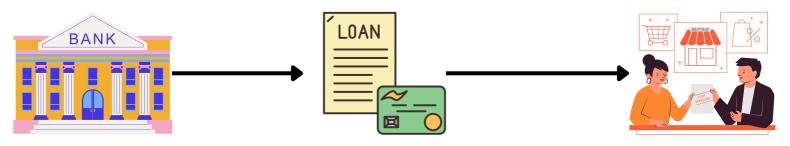
From the above bar plot we can infer that most of the applicants belong to the Age Group '31-40'

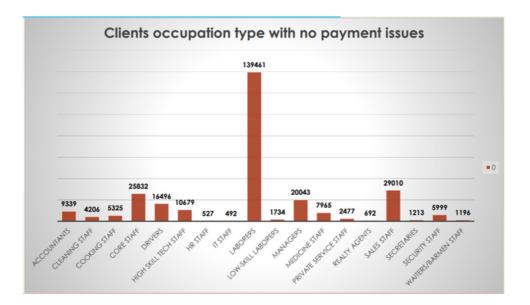


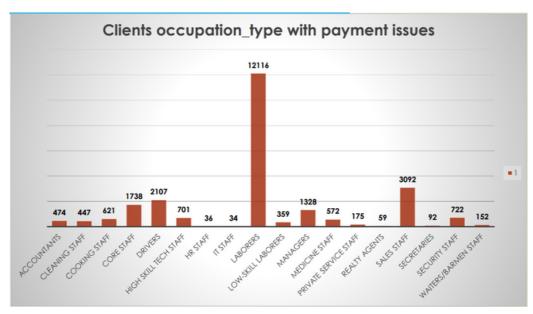
<u>Findings</u> - V

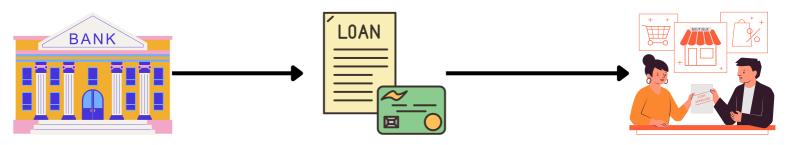


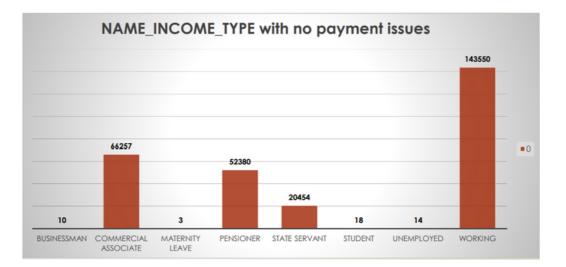

From the above Bar plots we can infer that clients/applicants in the Age Group '31-40' are having the highest number when it comes to doing/returning Payment to Banks also they have they highest count of payment issues when returning money to the bank

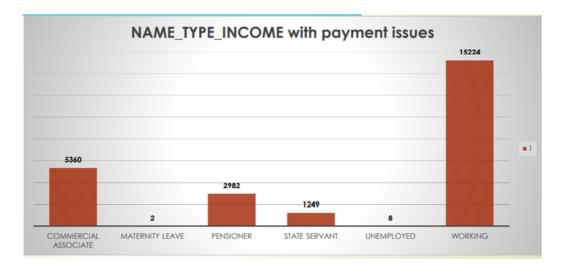

Findings - VI


From the above Bar plot we can infer that clients belonging to 'Low' income range have the highest count when it comes to clients with no payment issues

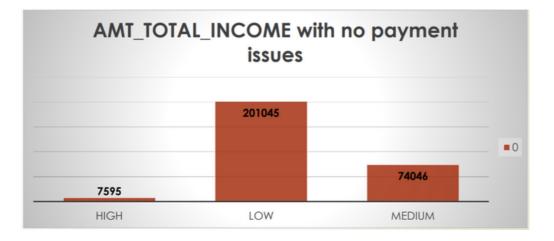

From the above Bar plot we can infer that clients belonging to 'Medium' income range have the highest count when it comes to clients with payment issues

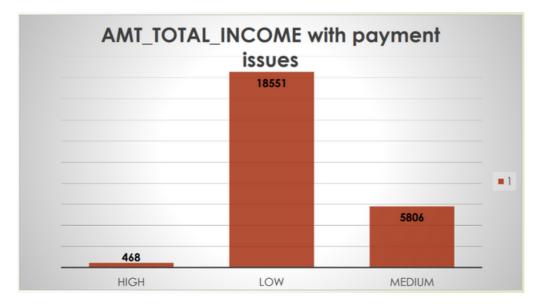

Findings - VII

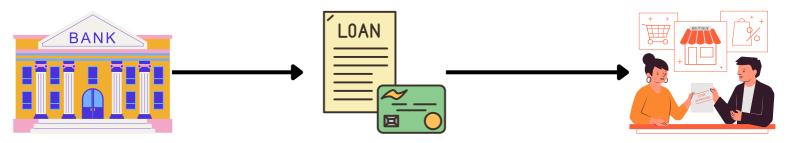

From the above bar plot we can infer that clients with occupation_type 'Laborers' have the highest number of count when it comes to clients with no payment issues

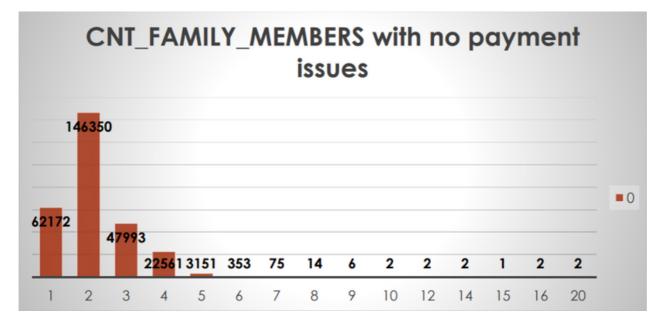

From the above bar plot we can infer that clients with occupation_type 'Laborers' have the highest number of count when it comes to clients with payment issues

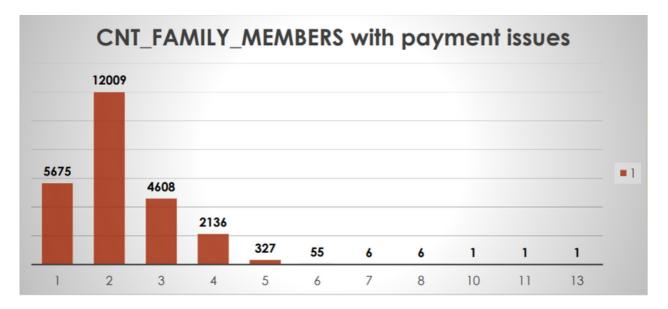

Findings - VIII


From the above Bar plot we can infer that clients having income_type as 'WORKING' have the highest count when it comes to clients with no payment issues

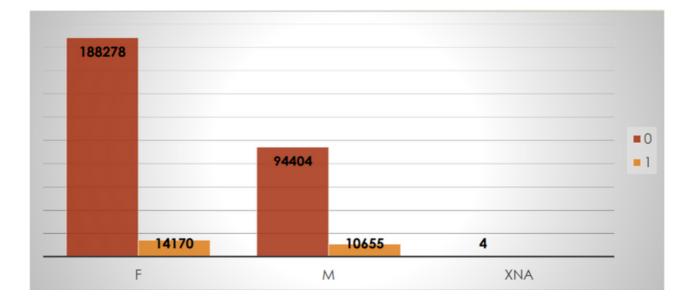

From the above Bar plot we can infer that clients having income_type as 'WORKING' have the highest count when it comes to clients with payment issues

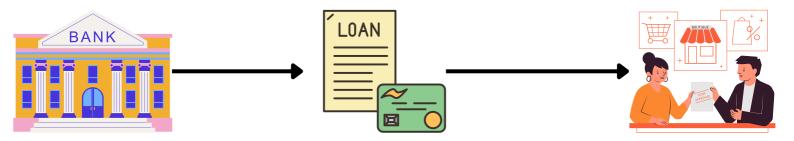

Bank Loan Case Study <u>Findings</u> - IX

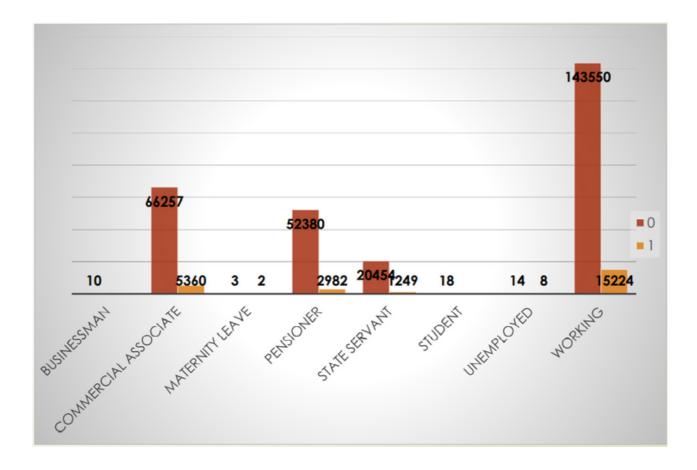

From the above Bar plot we can infer that client having the total income range as 'LOW' have the highest count when it comes to clients having no payment issues

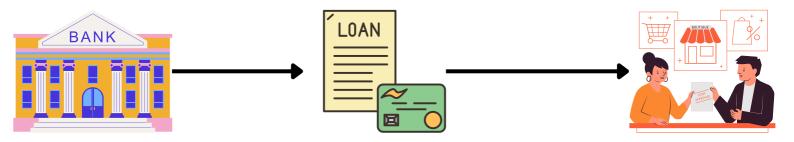

From the above Bar plot we can infer that client having the total income range as 'LOW' have the highest count when it comes to clients having payment issues

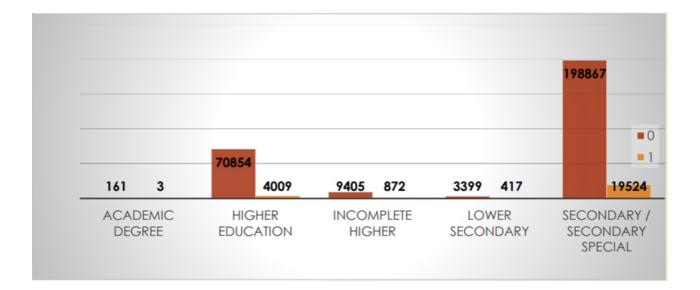

Bank Loan Case Study <u>Findings</u> - X

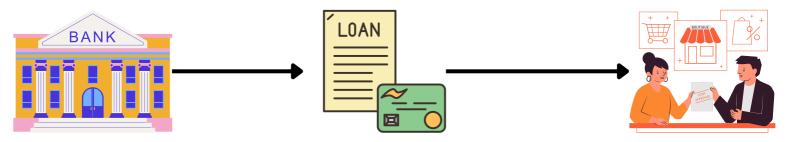

From the above Bar plot we can infer that clients having total count of family members as 2 have the highest count when it comes to clients having no payment issues

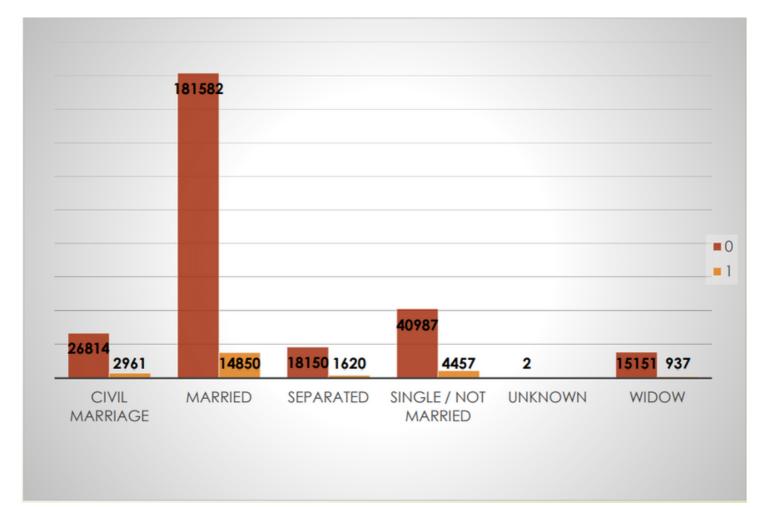

From the above Bar plot we can infer that clients having total count of family members as 2 have the highest count when it comes to clients having payment issues

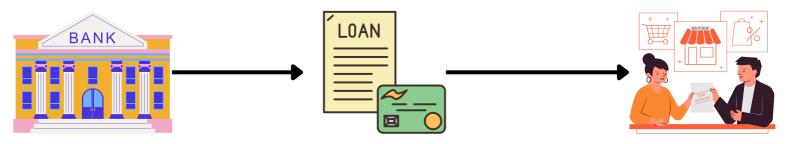

Bank Loan Case Study <u>Findings</u> - XI

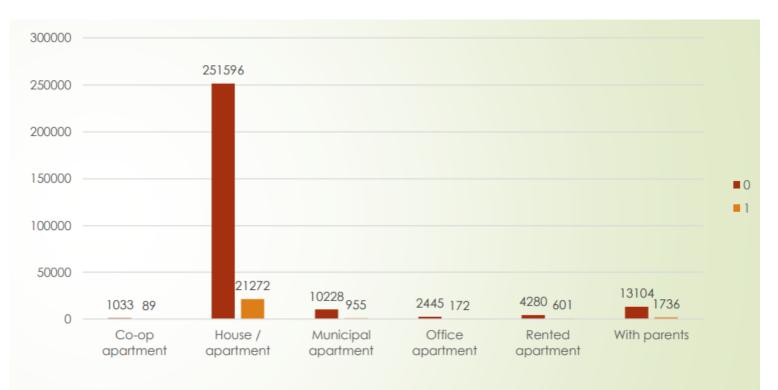

From the above Bar Plot we can infer that Clients with CODE_GENDER = 'F' have the highest number of non-defaulters i.e. 188278-14170 = 174108

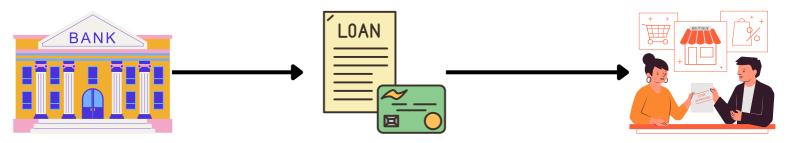

Bank Loan Case Study <u>Findings</u> - XII

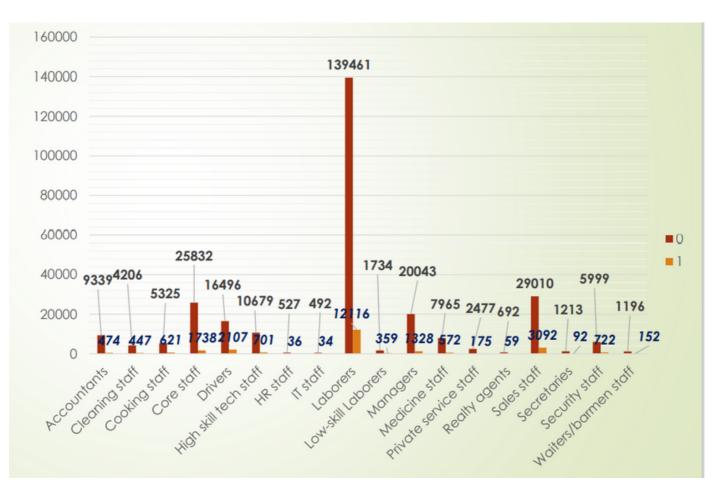

From the above Bar Plot we can infer that clients having NAME_INCOME_TYPE = 'WORKING' having the highest count of Nondefaulters i.e. 143550-15224 = 128326

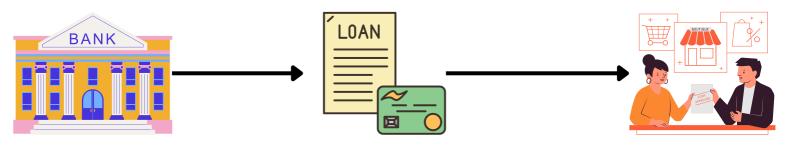

Bank Loan Case Study <u>Findings</u> - XIII


From the above Bar Plot we can infer that clients having NAME_EDUCATION_TYPE = 'SECONDARY/SECONDARY SPECIAL' have the highest count for Non defaulters i.e.198867-19524 = 179343

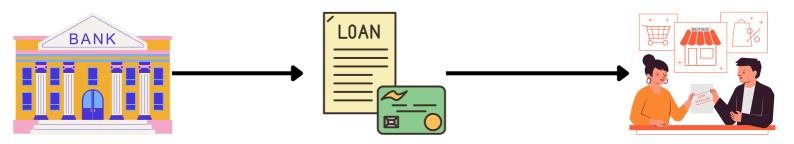

Bank Loan Case Study Findings - XIII


From the adjacent Bar Plot we can infer that clients having NAME_FAMILY_STATUS = 'MARRIED' have the highest count of Non defaulters i.e.181582 – 14850 = 166732

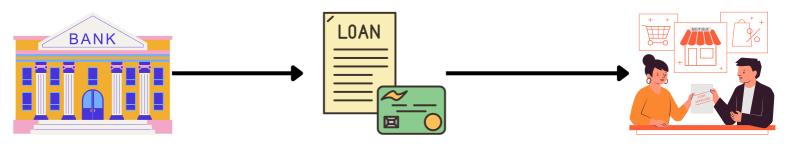

Bank Loan Case Study Findings - XIV

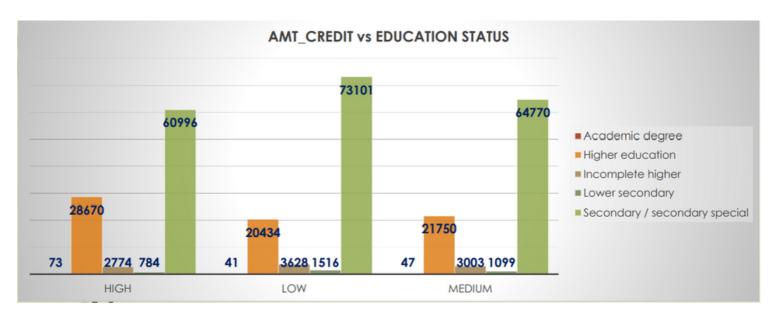

From the above Bar Plot we can infer that clients having NAME_HOUSING_TYPE = 'House/Apartment' have the highest count of Non-defaulters i.e. 251596-21272 = 230324


Bank Loan Case Study <u>Findings</u> - XV

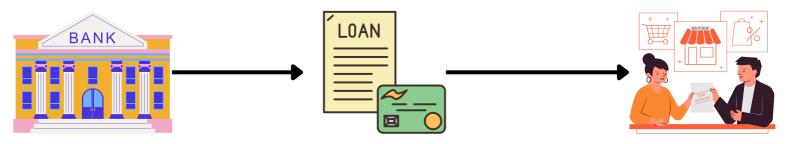

From the adjacent Bar plot we can infer that clients having occupation_type = 'Laborers' have the highest count for Nondefaulters i.e. 139461-12116 = 127345

Bank Loan Case Study Findings - XVI

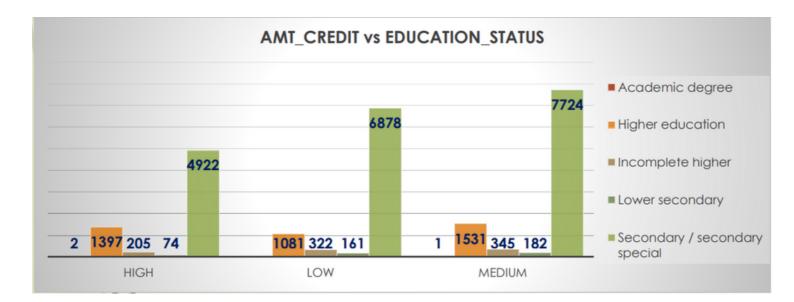

From the above Bar plot we can infer that Females belonging to Low income group are the highest number of clients with no payment issues


Bank Loan Case Study <u>Findings</u> - XVII

From the above Bar plot we can infer that Females belonging to Low income group are the highest number of clients with payment issues

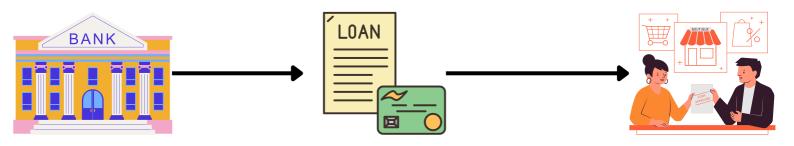


Bank Loan Case Study <u>Findings</u> - XVIII

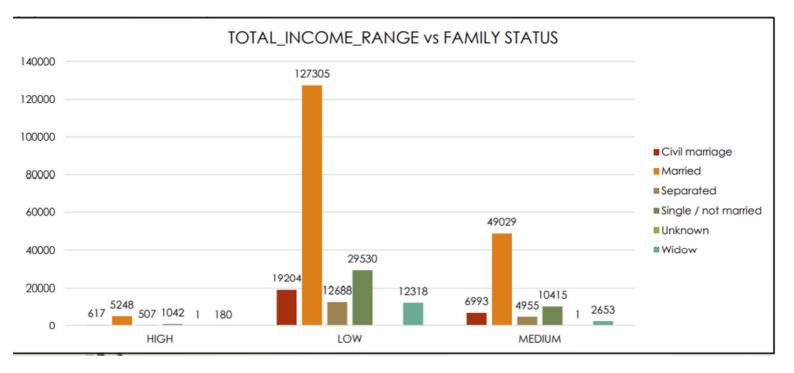


From the above Bar Plot we can infer that clients having credit amt range as 'Low'

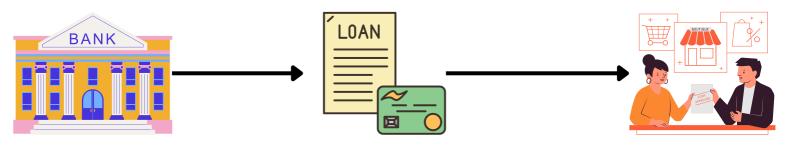
and education status as 'Secondary/ Secondary Special' have the highest count for clients with no payment issues

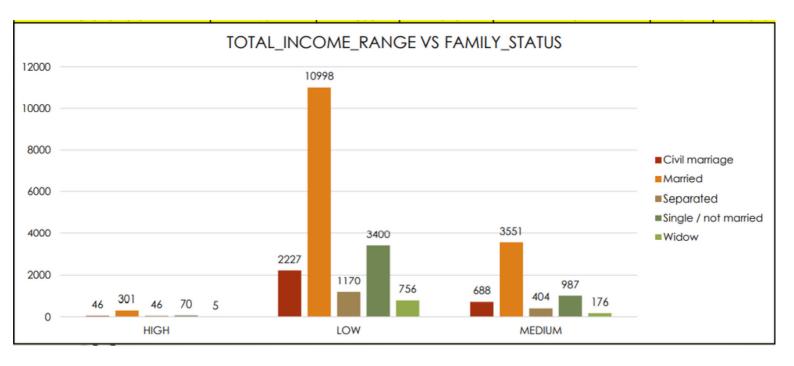


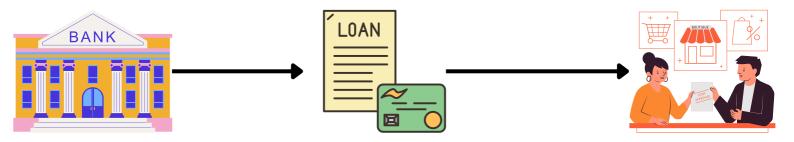
Bank Loan Case Study <u>Findings</u> - XIX



From the above Bar Plot we can infer that clients having credit amt range as 'Medium'


and education status as 'Secondary/ Secondary Special' have the highest count for clients with payment issues

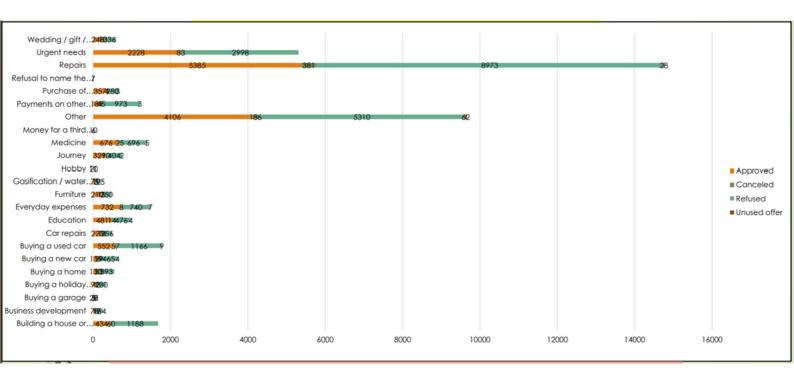

Bank Loan Case Study <u>Findings</u> - XX


From the above Bar plot we can infer that clients with total_income_range as 'Low' and family_status as 'Married' have the highest count for clients having no payment issues

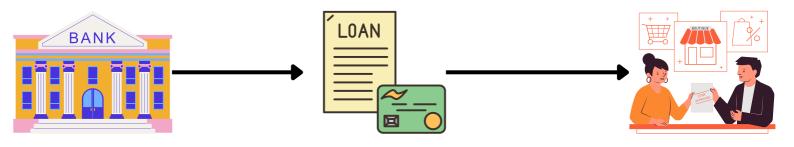
Bank Loan Case Study <u>Findings</u> - XXI



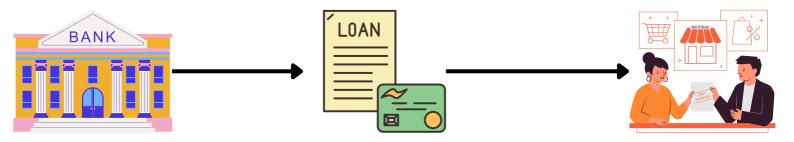
From the adjacent Bar plot we can infer that clients with total_income_range as 'Low' and family_status as 'Married' have the highest count for clients having payment issues



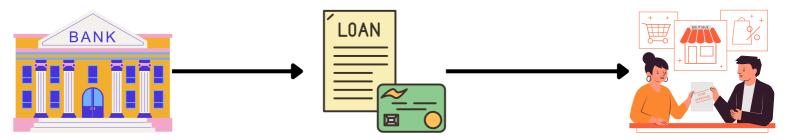
Bank Loan Case Study <u>Findings</u> - XXII


Count of NAME_CONTRACT_STATUS	Column Labels				
Row Labels	Approved	Canceled	Refused	Unused offer	Grand Total
Building a house or an annex	434	60	1188		1682
Business development	78	12	164		254
Buying a garage	28	5	51		84
Buying a holiday home / land	91	13	230		334
Buying a home	130	23	393		546
Buying a new car	139	29	465	4	637
Buying a used car	552	57	1166	9	1784
Car repairs	223	14	256		493
Education	481	14	476	4	975
Everyday expenses	732	8	740	7	1487
Furniture	210	15	250		475
Gasification / water supply	75	3	125		203
Hobby	11		20		31
Journey	329	10	404	2	745
Medicine	676	25	696	5	1402
Money for a third person	10		6		16
Other	4106	186	5310	62	9664
Payments on other loans	189	45	973	3	1210
Purchase of electronic equipment	357	4	280	3	644
Refusal to name the goal	1		7		8
Repairs	5385	381	8973	28	14767
Urgent needs	2228	83	2998		5309
Wedding / gift / holiday	248	10	336		594
Grand Total	16713	997	25507	127	43344

Bank Loan Case Study <u>Findings</u> - XXII (Cont...)


From the above Table and Bar Plot we can infer that Name of Contract status i.e. Repairs work has the highest count of Approved Loans

Analysis


Using the Why's approach I am trying to find some more useful insights

- Why is it that the target_variable is of so much importance?
- ---> In this dataset target_variable represents whether the client had some payment issues(1) or the client didn't had some payment issues(0); It is important because the target_variable decides whether the bank should increase/decrease it's interest rates on various loans given by the bank; Also in this case almost 92% of the clients didn't had any payment issues and only 8% of them had payment issues, this tells that bank's credit score is good and it has very less or no Non-preforming Accounts.
- Why is it that proportion of Female clients more than that of the Male clients?
- ---> In countries like India especially there have been laws made by the Government for Women who want to establish their own Start-up, Business or their own classes, catering services, etc.; These laws offer loans to women clients at a relatively low interest rates; Also in some cases people purposely use their retired/household mother or household wife so that they can get some sort of concession i.e. low interest rates while applying for Home loans
- Why should bank prefer other Housing type clients though House/Apartments Housing type clients have the highest proportion of non-defaulters?
- ----> Cause people in other groups like Municipal Apartment, Coop Apartment, Rented Apartment, with Parents are in the search of their own house of their own name plate; Also now a days in India the joint family system is declining and the future generations opt to live in their own 1/2 BHK's rather than living together will all family members in big Family Apartments

Bank Loan Case Study Analysis (Cont..)

- Why should bank opt for working class clients more than the state-government class clients though state-government employees enjoy a lot of benefits and regular salary?
- ----> It is true that state government employee enjoy a lot of benefits but they also get housing allowances greater than that of working class and in some cases they even get an apartment to live with their families as long as they work for the state government; On the other hand the working class don't enjoy such housing allowances or get very less of it, also the working class don't get an apartment to live in for their entire professional life(i.e. until retirement) and so working class opt for purchasing their own house by taking house loan
- Why should Bank not go for approving loans to 'Laborers' occupation_type clients though they have the highest non-defaulters count?
- ----> Laborers take only personal loans for marriage or house repair purpose and their loan amount is also less and the interest on such loans is also less as compared to home loan, car loan, etc. which in turn will cause less profits to the bank.
- Why is it that females with low income group have the lowest count of defaulters?
- ----> Females belonging to such groups take loan of small amounts just for starting their own start-ups, business or catering/ parlor services and they usually enjoy benefit from government schemes for such purpose

Bank Loan Case Study Conclusion

In conclusion, I would like to conclude the following:-

- The proportion/percentage of the defaulters(target = 1) is around 8% and that of non-defaulters(target = 0) is around 92%
- The Bank generally lends more loan to Female clients as compared to Males clients as the count of Female clients in the defaulter's list is less than that of Males. Still Bank can look for more Male clients if their credit amount is satisfied
- Also the clients who belong to Working class tend to pay their loans on time followed by the clients who fall under Commercial Associate
- Clients having Education status like Secondary/ Higher Secondary or more tend to pay loan on time so bank can prefer lending loans to clients having such Education Status
- Clients who fall in the Age Group 31-40 have the highest count for paying off their loans on time followed by the clients who fall in the Age Groups 41-60
- Clients having LOW credit amount range tend to pay off their loans on time than compared to HIGH and MEDIUM credit range
- Clients living with their Parents tend to pay off their loans quickly as compared to other housing type. So Bank can lend loan to clients having housing type → Living with Parents
- Clients taking loan for purchasing New Home i.e. clients taking Home Loans or purchasing New Car i.e. Car Loans and clients who have a income type as State Servant tend to pay their loans on time and hence Bank should prefer clients having such background
- The Bank should be more cautious when lending money to clients with Repairs purpose because they have high count of Defaulters along with High count of Defaulters

XYZ Ads Airing Report

Description

Advertising is a way of marketing your business in order to increase sales or make your audience aware of your products or services. Until a customer deals with you directly and actually buys your products or services, your advertising may help to form their first impressions of your business. Target audience for businesses could be local, regional, national or international or a mixture. So they use different ways for advertisement. Some of the types of advertisement are: Internet/online directories, Trade and technical press, Radio, Cinema, Outdoor advertising, National papers, magazines and TV. Advertising business is very competitive as a lot of players bid a lot of money in a single segment of business to target the same audience. Here comes the analytical skills of the company to target those audiences from those types of media platforms where they convert them to their customers at a low cost.

XYZ Ads Airing Report

<u>The Problem</u>

- What is Pod Position? Does the Pod position number affect the amount spent on Ads for a specific period of time by a company?
- What is the share of various brands in TV airings and how has it changed from Q1 to Q4 in 2021?
- Conduct a competitive analysis for the brands and define advertisement strategy of different brands and how it differs across the brands.
- Mahindra and Mahindra wants to run a digital ad campaign to complement its existing TV ads in Q1 of 2022. Based on the data from 2021, suggest a media plan to the CMO of Mahindra and Mahindra. Which audience should they target? *Assume XYZ Ads has the ad viewership data and TV viewership for the people in India.

XYZ Ads Airing Report

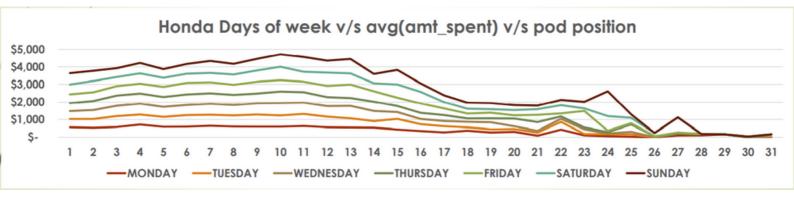
<u>Design</u>

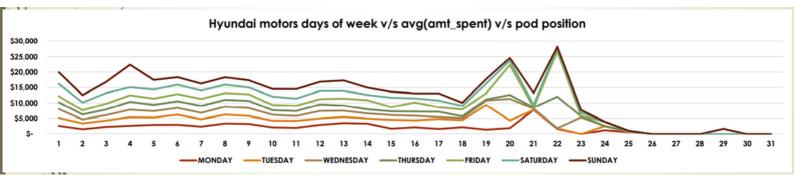
1 . Firstly I made a copy of the raw data where I can perform the Analysis so that what ever changes I made it will not affect the original data

2. Then dropping the columns which have no use for the analysis that we will be doing

3. After dropping the irrelevant columns now we need to remove the rows from the dataset having anyone of its column value as blank/NULL

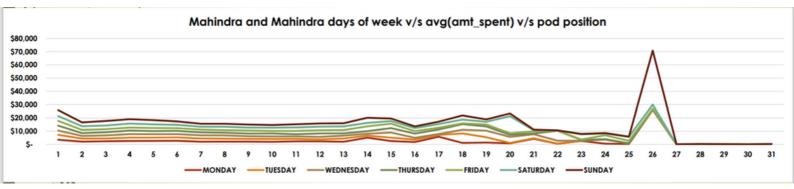
4. Then we need to get rid off the duplicate values in the dataset which can be achieved by using the 'Remove Duplicate Values/Cells' available in the 'Data' tab

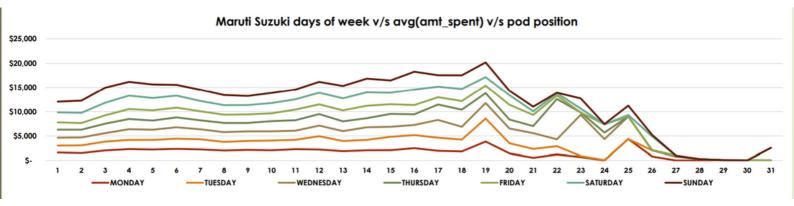


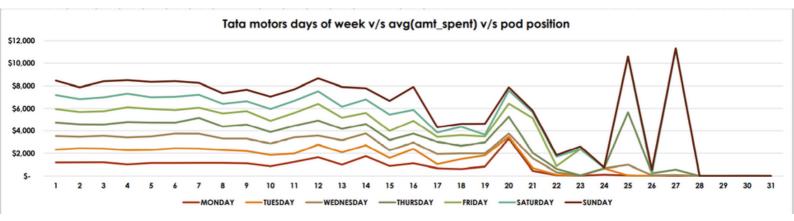

<u>Findings</u> - I

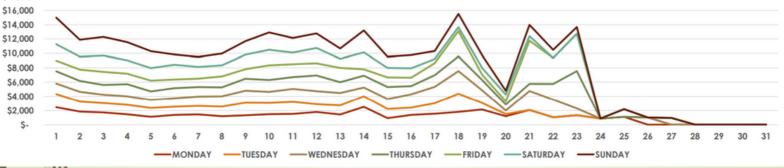
→ Pod position is the position of the ad commercial during an ad commercial break

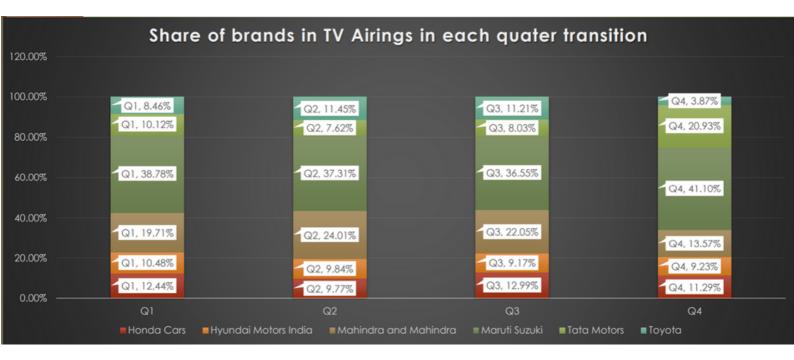
eg: If in a commercial break one sees AMUL butter Ad first, then he/she sees Big Basket Ad the next and then he/she sees Amazon Ad.


 \rightarrow So, in the above case the Pod positions of brands AMUL, Big Basket and Amazon are 1,2 and 3 respectively.






Findings - I (Cont..)

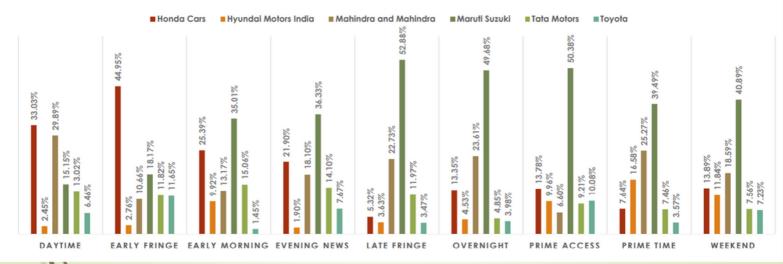


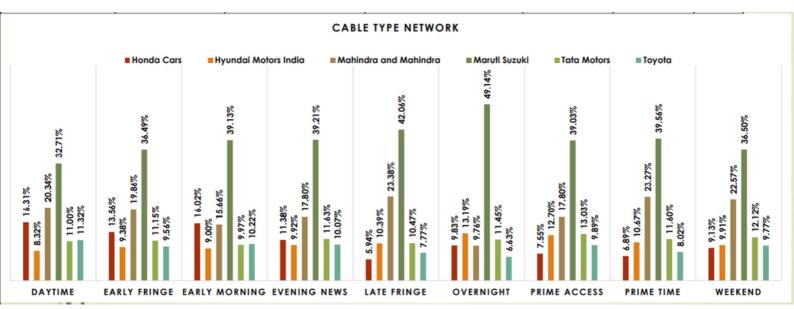
From the above bar plots I have inferred the following:-

- For Honda Motors as the Pod Position tends towards 31, the amount spent first increases till pod pos.10 and then decreases from pod pos.11 onwards
- For Hyundai Motors as the Pod Position tends towards 31, the amount spent first increases till pod pos.22 and then decreases from pod pos. 23 onwards
- For Mahindra and Mahindra as the Pod Position tends towards 31, the amount spent first increases till pod pos. 26 and then decreases from pod pos. 27 onwards
- For Maruti Suzuki as the Pod Position tends towards 31, the amount spent first increases till pod pos. 18 and then decreases from pod pos. 19 onwards
- For Tata Motors as the Pod Position tends towards 31, the amount spent first increases till pod pos. 27 and then decreases from pod pos. 28 onwards
- For Toyota as the Pod Position tends towards 31, the amount spent first increases till pod pos. 18 and then decreases from pod pos. 19 onwards

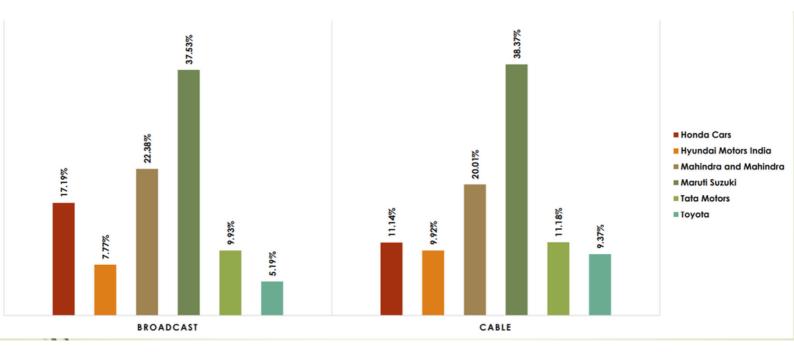
<u>Findings</u> - II

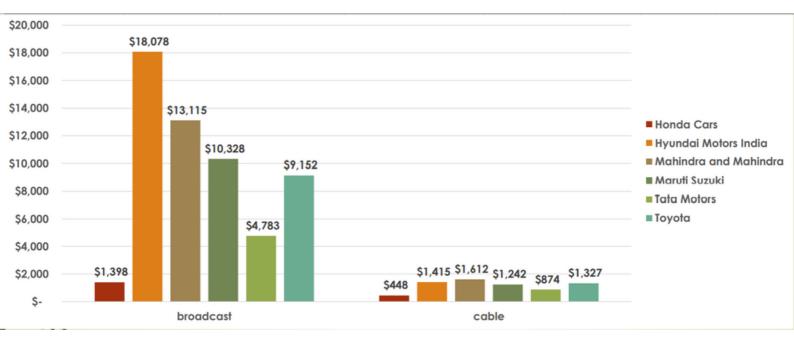
From the above bar plot I have inferred that the brand named 'Maruti Suzuki' has the highest share in each Quarter for TV Airings.



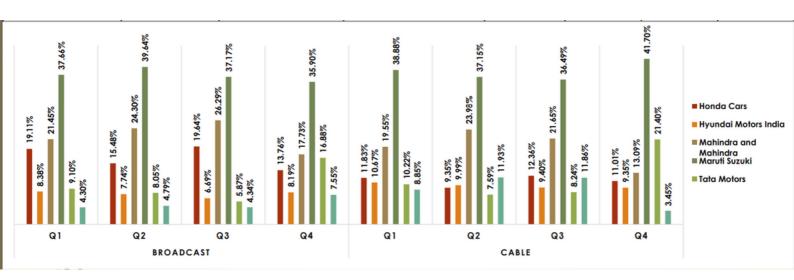


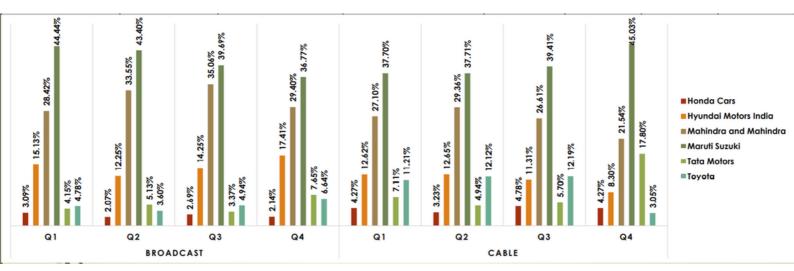
<u>Findings</u> - III


BROADCAST TYPE NETWORK

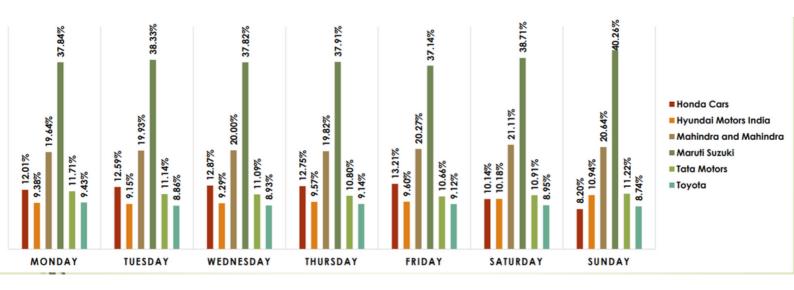


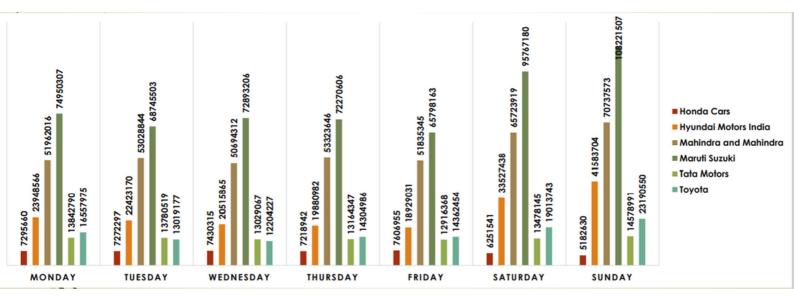
Findings - III (Cont...)





Findings - III (Cont...)



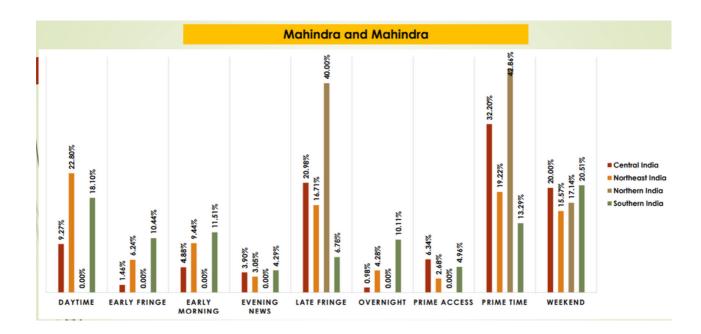


Findings - III (Cont...)

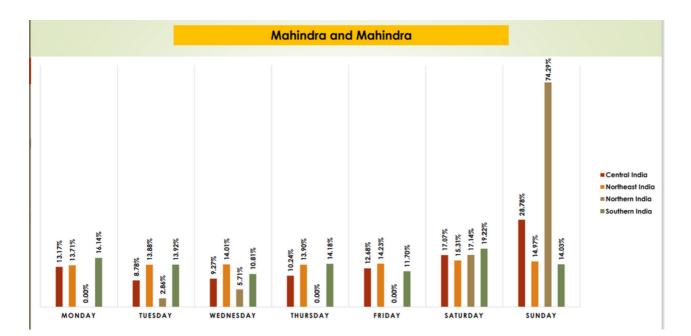
Findings - III (Cont...)

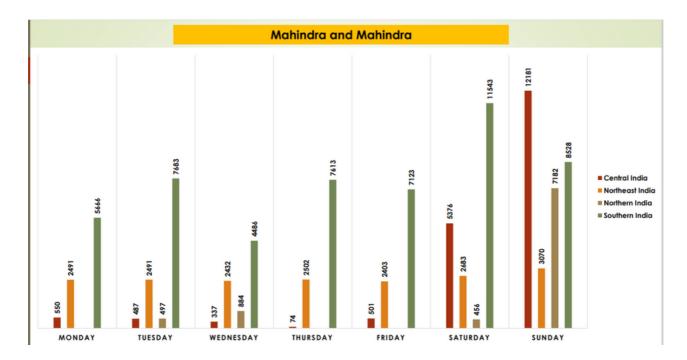
From the above Bar plots I have inferred the following:-


- The brand 'Maruti Suzuki' has the highest share for TV Ads in both network types wiz Broadcast(37.53%) and cable(38.37%)
- The avg_amt_spent on Broadcast type network is the highest for the brand 'Hyundai Motors India' i.e. \$18,078 and on cable type network is the highest for the brand 'Mahindra and Mahindra' i.e. \$1,612
- For the broadcast type network the brand 'Maruti Suzuki' has the highest share for the Early Morning(35.01%), Evening News(36.33%), Late Fringe(52.88%), Overnight(49.68%), Prime Access(50.38%), Prime Time(39.49%), Weekend(40.89%), but for Daytime and Early Fringe the brand 'Honda Cars' has the highest share i.e. 33.03% and 44.95% respectively.
- For the cable type network the brand 'Maruti Suzuki' has the highest share for all the DayParts of TV Ads
- For the cable type network the brand 'Maruti Suzuki' has the highest share for all the DayParts of TV Ads
- Also the brand 'Maruti Suzuki' spent the highest sum of amount in TV Ads Airings in all Quarters(Q1,Q2,Q3 and Q4) for both the network types: Broadcast type and Cable Type
- The brand 'Maruti Suzuki' has the highest share and also spent the most for TV Ads Airings for all days of week

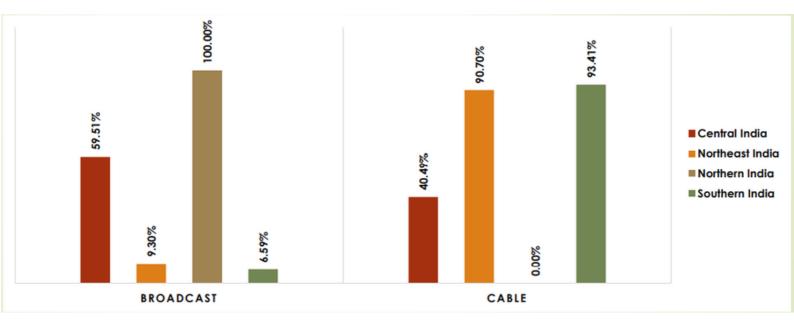


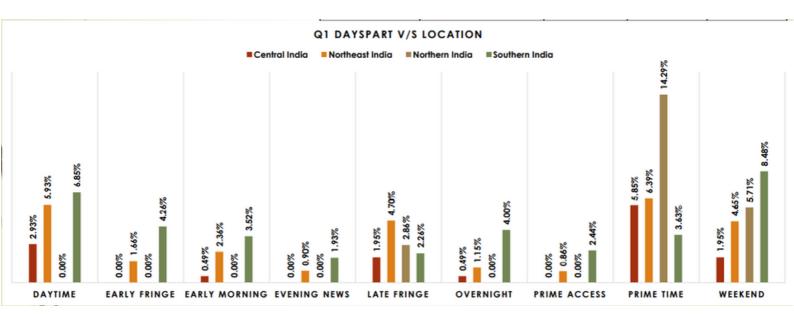
<u>Findings</u> - IV



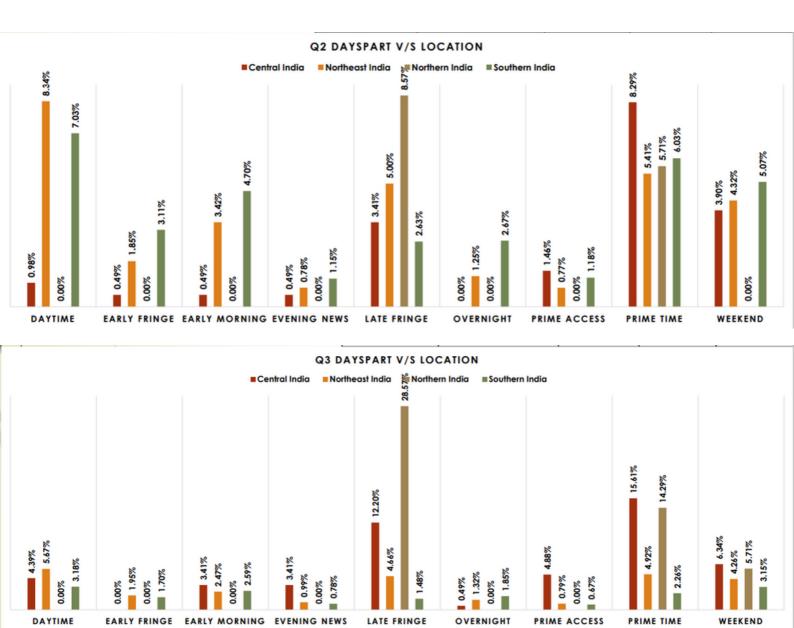


Findings - IV (Cont...)

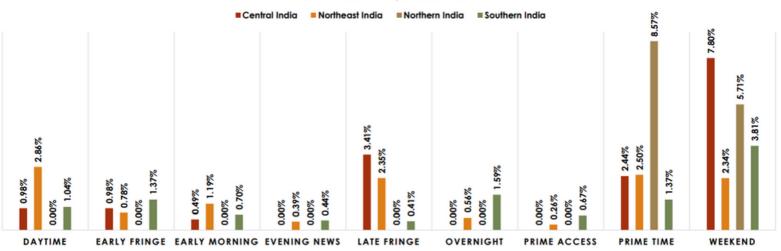




Findings - IV (Cont...)



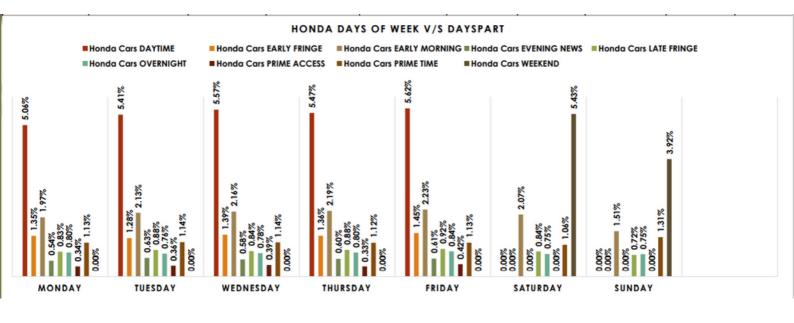
Findings - IV (Cont...)

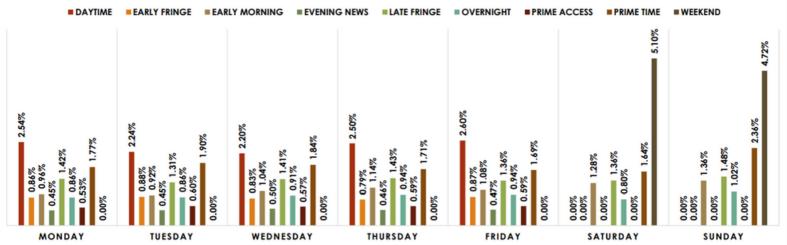


Findings - IV (Cont...)

Q4 DAYSPART V/S LOCATION

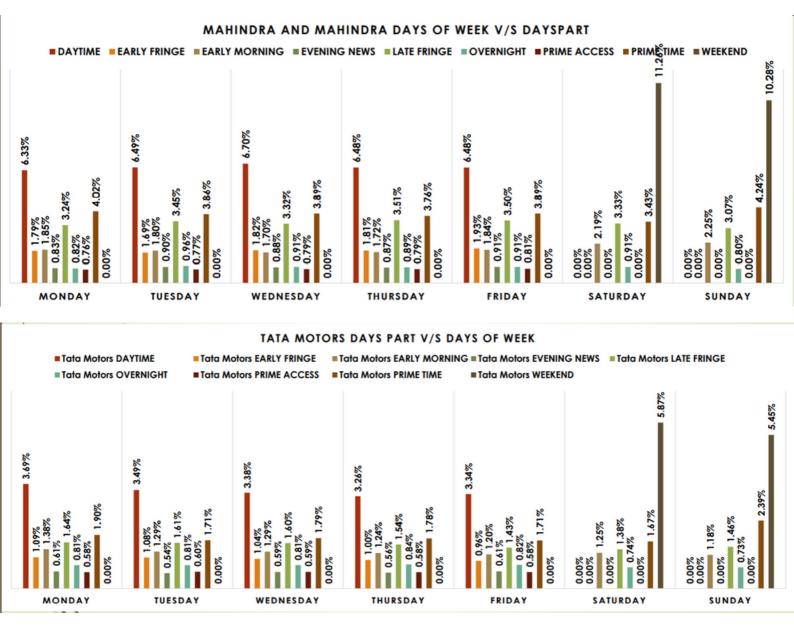
From the above bar plots I have inferred the following:-

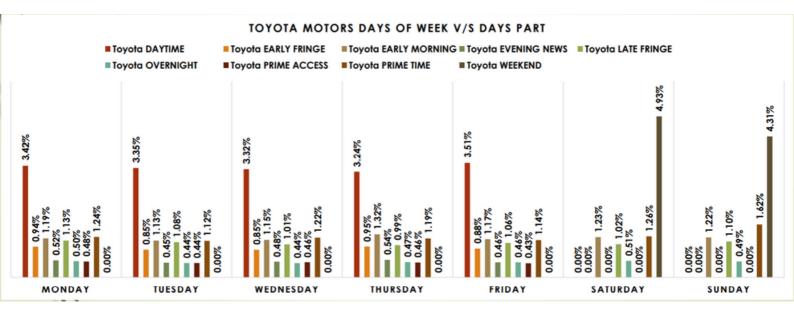

- Most of the share of TV Ads is from the dayspart Late Fringe (40%) for Northern India, Prime Time (42.86%) for Northern India and Daytime (22.80%) for North East India
- Most of the share for TV Ads is on Friday, Saturday and Sunday; On Sunday the share for Northern India is 74.29%
- In case of Cable network the share of Central India is 40.49%; share of North East India is 90.70%; share of Northern India is 0% and share of Southern India is 93.41%
- In case of Broadcast network the share of Central India is 59.51%; share of North East India is 9.30%; share of Northern India is 100% and share of Southern India is 6.59%
- In Q1 Prime Time has the highest share from Northern India i.e. 14.29% ; In Q2 Late Fringe has the highest share from Northern India i.e. 8.57% ; In Q3 again Late Fringe has the highest share from Northern India i.e. 28.57% ; In Q4 Prime Time has the highest share from Northern India i.e. 8.57%



<u>Findings</u> - V

HYUNDAI MOTORS DAYS OF WEEK V/S DAYSPART





Findings - V (Cont...)

Findings - V (Cont...)

Also most of the share in TV Ads Airing for each brand was on Saturday Weekend show daypart

<u>Analysis</u>

Using the Why's approach I am trying to find some more useful insights:-

- Why is POD position is so important and why do companies are betting on pod positions which fall in the range 7-13, 15-20, 21-23?
- ---> POD position is the position of Ad of the particular Brand in a series of Commercial Ad break. Most of the people are bored when the main content is stopped and Ad commercial starts, also in some cases after a continuous 5-8 minutes of main content people get out of their couch/sitting place to do some other work in the Ad break; POD position 1-6 is of approx 1-2.5 minutes in which the viewer can do some other work; POD position 7-13, 15-20 and 21-23 are favorable POD positions to show their particular brand name; and so most of companies bet on such POD positions
- Why is that the share of 'Maruti Suzuki' is more in all quarters when compared to other brands?
- ----> Due to efficient Marketing Strategy of the Marketing team of the Maruti Suzuki

<u>Analysis</u> (Cont...)

- Why is it that most of the companies bid for Ads during the Afternoon and Evening time and less in the Morning time?
- ---> Most of the people are in hurry during the weekdays in the morning to reach their office and they don't have time to see the Ads, they just read the main head lines and some even don't switch ON their Television; during the afternoon break people have some time during the break in the office and during the evening/night time people have time during after having dinner wherein they can sit back and enjoy the news along with Ads; so most of the companies bid for Ads during the Evening time and Afternoon time and less during the morning time.
- Why is that share of Maruti Suzuki and TATA Motors is highest in the Q4 compared to it's share in other Quarters?
- ----> Most of the companies have their clearance stock sale in Q4 and most of them give discounts on their respective brands. In this case Marketing teams of both 'TATA Motors' and 'Maruti Suzuki' have planned a proper strategy so as to bid most of the share in TV Ads Airing in the Q4 of the financial year

<u>Analysis</u> (Cont...)

- Why is it that most of the share in TV Ads Airing for each brand was on Saturday Weekend show daypart?
- ----> Most of the viewers have day off Sunday and most of them watch TV for late night hours on Saturday Night and so most of the Brands bid a huge amount for POD positions in these Saturday weekend shows. Also if some viewers want to get into more details for a particular model of the brand they came across during the Ad break on Saturday Weekend show; they could visit the nearest showroom of that particular brand and even purchase the model if they liked it, which would gain profits for the brand. So, most of the brands find it profitable to bid on POD positions on the Saturday Weekend Shows

Conclusions

In conclusion, I would like to conclude the following:-

- The POD position of different Brands has some sort of relation with the amount spent. Firstly the amount Spent for POD position increases until a certain POD position and when the POD position tends towards 31 there is a gradual decrease in tha amount spent for some brands while for some brands the amount spent for POD position decreases drastically.
- For brand like Honda the avg_amt_spent is the highest or is at the peak for POD position around 10
- For brand like Hyundai motors the avg_amt_spent is the highest or is at the peak for POD position around 20 and 22
- For brand like Mahindra and Mahindra the avg_amt_spent is the highest or is at the peak for POD position for around 26
- For brand like Maruti Suzuki the avg_amt_spent is the highest or is at the peak for POD position for around 19
- For brand like TATA motors the avg_amt_spent is the highest or is at the peak for POD position for around 25 and 27
- For brand like Toyota the avg_amt_spent is the highest or is at the peak for POD position for around 18,21 and 23
- We can infer from the bar plots and line plots that, from POD position 28 there is very less amount of avg_amt_spent by all the brands
- The brand 'Maruti Suzuki' had the highest Ads proportion in all the quarters i.e. 38.78% in Q1; 37.31% in Q2; 36.55% in Q3 ;41.10% in Q4
- For brand 'Honda' We can infer that it has shown a decline in TV Ads Airings from Q1 (12.44%) to Q2(9.77%), then from Q2(9.77%) to Q3(12.99%) it has increased and then from Q3(12.99%) to Q4(11.29%) it has again decreased.

Conclusions (Cont..)

- For brand 'Hyundai Motors' We can infer that it has shown a decline in TV Ads Airings from Q1(10.48%) to Q2(9.84%), then from Q2(9.84%) to Q3(9.17%) it has again shown a decline, then from Q3(9.17%) to Q4(9.23%) it has shown some increase
- For brand like 'Mahindra and Mahindra' It has shown an increase in TV Ads Airings from Q1(19.71%) to Q2(24.01%), then from Q2(24.01%) to Q3(22.05%) it has shown some decline, then from Q3(22.05%) to Q4(13.57%) it has shown a sharp decline
- For brand like 'Maruti Suzuki' It has shown a decline in TV Ads Airings from Q1(38.78%) to Q2(37.31%), then from Q2(37.31%) to Q3(36.55%) it has again shown some decline and then from Q3(36.55%) to Q4(40.10%) it has shown a great increase of almost 5%.
- For brand like 'TATA Motors' It has shown some decline in TV Ads Airings from Q1(10.12%) to Q2(7.62%), then from Q2(7.62%) to Q3(8.03%) it has shown an increase and then from Q3(8.03%) to Q4(20.93%) it has shown a spectacular growth of almost 12%
- For brand like 'Toyota' It has shown an increase in TV Ads Airings from Q1(8.46%) to Q2(11.45%), the from Q2(11.45%) to Q3(11.21%) it has shown some decline and then from Q3(11.21%) to Q4(3.87%) it has shown a significant amount of decline of almost -10%
- → From the competitive Bar plots and Tables we can infer that The brand 'Maruti Suzuki' has the highest share for TV Ads in both network types wiz Broadcast(37.53%) and cable(38.37%)
- The avg_amt_spent on Broadcast type network is the highest for the brand 'Hyundai Motors India' i.e. \$18,078 and on cable type network is the highest for the brand 'Mahindra and Mahindra' i.e. \$1,612

Conclusions (Cont..)

- For the broadcast type network the brand 'Maruti Suzuki' has the highest share for the Early Morning(35.01%), Evening News(36.33%), Late Fringe(52.88%), Overnight(49.68%), Prime Access(50.38%), Prime Time(39.49%), Weekend(40.89%), but for Daytime and Early Fringe the brand 'Honda Cars' has the highest share i.e. 33.03% and 44.95% respectively.
- For the cable type network the brand 'Maruti Suzuki' has the highest share for all the DayParts of TV Ads
- Also the brand 'Maruti Suzuki' has the highest share in TV Ads Airings in all Quarters(Q1,Q2,Q3 and Q4) for both the network types: Broadcast type and Cable Type
- Also the brand 'Maruti Suzuki' spent the highest sum of amount in TV Ads Airings in all Quarters(Q1,Q2,Q3 and Q4) for both the network types: Broadcast type and Cable Type
- The brand 'Maruti Suzuki' has the highest share and also spent the most for TV Ads Airings for all days of week
- → For the brand 'Mahindra and Mahindra' from the bar plots and tables we can infer that:-
- Most of the share of TV Ads is from the dayspart Late Fringe (40%) for Northern India, Prime Time (42.86%) for Northern India and Daytime (22.80%) for North East India
- Most of the share for TV Ads is on Friday, Saturday and Sunday; On Sunday the share for Northern India is 74.29%
- In case of Cable network the share of Central India is 40.49%; share of North East India is 90.70%; share of Northern India is 0% and share of Southern India is 93.41%
- In case of Broadcast network the share of Central India is 59.51%; share of North East India is 9.30%; share of Northern India is 100% and share of Southern India is 6.59%

Conclusions (Cont..)

- In Q1 Prime Time has the highest share from Northern India i.e. 14.29%
- In Q2 Late Fringe has the highest share from Northern India i.e. 8.57%
- In Q3 again Late Fringe has the highest share from Northern India i.e. 28.57%
- In Q4 Prime Time has the highest share from Northern India i.e. 8.57%
- So, the CMO can select such a tactic which can compete with the above conditions in daily, weekly, quarterly as well as on monthly basis
- Also most of the share in TV Ads Airing for each brand was on Saturday Weekend show daypart
- Also it is a verified fact that most of the viewers have day off Sunday and most of them watch TV for late night hours on Saturday Night and so most of the Brands bid a huge amount for POD positions in these Saturday weekend shows
- Also if some viewers want to get into more details for a particular model of the brand they came across during the Ad break on Saturday Weekend show; they could visit the nearest showroom of that particular brand and even purchase the model if they liked it, which would gain profits for the brand
- So, most of the brands find it profitable to bid on POD positions on the Saturday Weekend Shows

Description

A customer experience (CX) team consists of professionals who analyze customer feedback and data, and share insights with the rest of the organization. Typically, these teams fulfil various roles and responsibilities such as: Customer experience programs (CX programs), Digital customer experience, Design and processes, Internal communications, Voice of the customer (VoC), User experiences, Customer experience management, Journey mapping, Nurturing customer interactions, Customer success, Customer support, Handling customer data, Learning about the customer journey.


Let's look at some of the most impactful AI-empowered customer experience tools you can use today: Interactive Voice Response (IVR), Robotic Process Automation (RPA), Predictive Analytics, Intelligent Routing

In a Customer Experience team there is a huge employment opportunities for Customer service representatives A.k.a. call centre agents, customer service agents. Some of the roles for them include: Email support, Inbound support, Outbound support, social media support.

Inbound customer support is defined as the call centre which is responsible for handling inbound calls of customers. Inbound calls are the incoming voice calls of the existing customers or prospective customers for your business which are attended by customer care representatives. Inbound customer service is the methodology of attracting, engaging, and delighting your customers to turn them into your business' loyal advocates. By solving your customers' problems and helping them achieve success using your product or service, you can delight your customers and turn them into a growth engine for your business.

The Problem

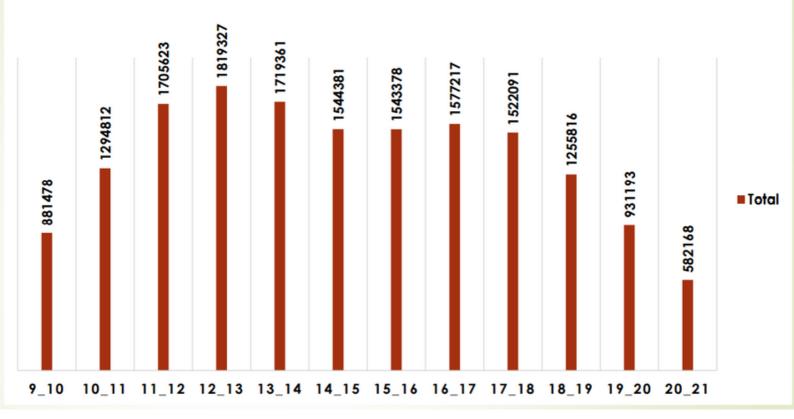
- Calculate the average call time duration for all incoming calls received by agents (in each Time_Bucket).
- Show the total volume/ number of calls coming in via charts/ graphs [Number of calls v/s Time]. You can select time in a bucket form (i.e. 1-2, 2-3,)
- As you can see current abandon rate is approximately 30%. Propose a manpower plan required during each time bucket [between 9am to 9pm] to reduce the abandon rate to 10%. (i.e. You have to calculate minimum number of agents required in each time bucket so that at least 90 calls should be answered out of 100.)
- Let's say customers also call this ABC insurance company in night but didn't get answer as there are no agents to answer, this creates a bad customer experience for this Insurance company. Suppose every 100 calls that customer made during 9 Am to 9 Pm, customer also made 30 calls in night between interval [9 Pm to 9 Am] and distribution of those 30 calls are as follows:

	Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot)										
9pm- 10pm 10	.0pm - 11pm	11pm- 12am	12am- 1am	1am - 2am	2am - 3am	3am - 4am	4am - 5am	5am - 6am	6am - 7am	7am - 8am	8am - 9am
3	3	2	2	1	1	1	11	3	4	4	5

• Now propose a manpower plan required during each time bucket in a day. Maximum Abandon rate assumption would be same 10%.

<u>Assumption:</u> An agent work for 6 days a week; On an average total unplanned leaves per agent is 4 days a month; An agent total working hrs is 9 Hrs out of which 1.5 Hrs goes into lunch and snacks in the office. On average an agent occupied for 60% of his total actual working Hrs (i.e 60% of 7.5 Hrs) on call with customers/ users. Total days in a month is 30 days.

<u>Findings</u> - I

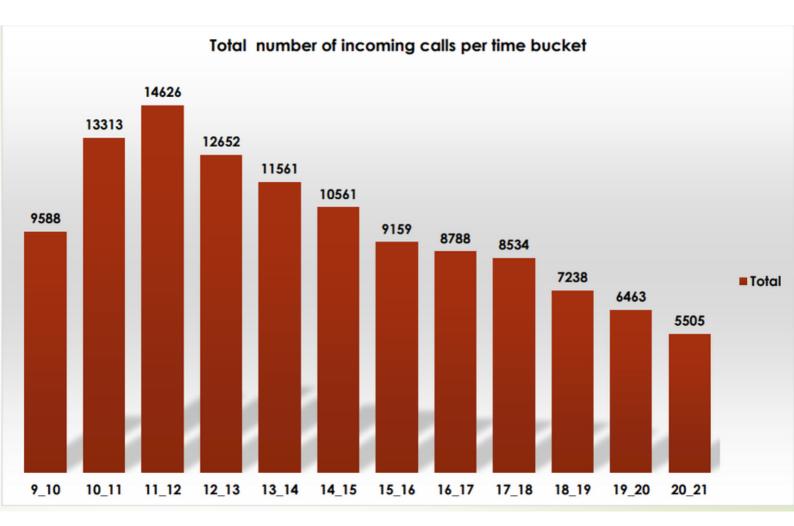

Average Call answered in seconds per time bucket 206.0 203.3 203.4 204.0 202.8 202.6 202.0 200.9 200.2 199.3 200.0 199.1 198.9 198.0 196.0 194.7 Total 193.7 194.0 192.9 192.0 190.0 188.0 186.0 9_10 10_11 11_12 12_13 13_14 14_15 15_16 16_17 17_18 19_20 20_21 18_19

From the above bar plot we can infer that time_bucket 19_20 i.e. 7PM to 8PM had the highest of average of calls answered in seconds i.e. 203.4

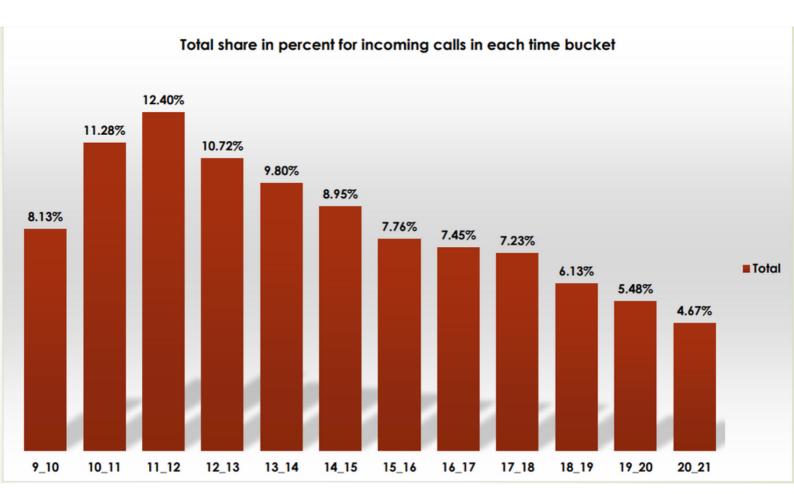
<u>Findings</u> - II

TOTAL SUM OF CALLS ANSWERED IN EACH TIME BUCKET

From the above Bar plot we can infer that the time_bucket 12_13 i.e. during the time period 12PM to 1PM had the highest total number of calls answered i.e. 1819327


<u>Findings</u> - III

From the above bar plot we can infer that the time_bucket 12-13 i.e. 12PM to 1PM had the highest count of calls answered i.e. 9432


Findings - IV

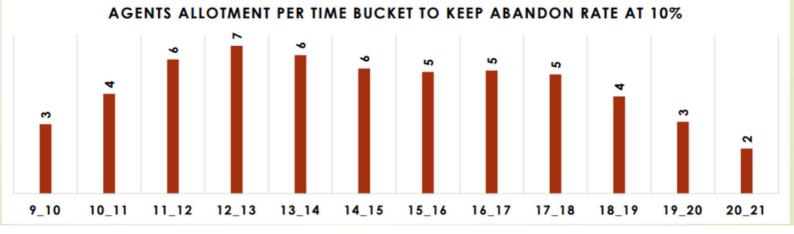
From the above bar plot we can infer that time bucket 11_12 i.e. 11AM to 12PM has the highest count for total number incoming calls i.e. 14626

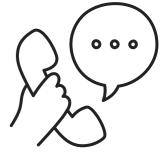
<u>Findings</u> - V

From the above bar plot we can infer that the time bucket 11_12 i.e. 11 AM to 12 PM has the highest share for incoming calls i.e. 12.40%

<u>Findings</u> - VI

Count of Call_Status	Column Labels			
Row Labels	abandon	answered	transfer	Grand Total
01-Jan	684	3883	77	4644
02-Jan	356	2935	60	3351
03-Jan	599	4079	111	4789
04-Jan	595	4404	114	5113
05-Jan	536	4140	114	4790
06-Jan	991	3875	85	4951
07-Jan	1319	3587	42	4948
08-Jan	1103	3519	50	4672
09-Jan	962	2628	62	3652
10-Jan	1212	3699	72	4983
11-Jan	856	3695	86	4637
12-Jan	1299	3297	47	4643
13-Jan	738	3326	59	4123
14-Jan	291	2832	32	3155
15-Jan	304	2730	24	3058
16-Jan	1191	3910	41	5142
17-Jan	16636	5706	5	22347
18-Jan	1738	4024	12	5774
19-Jan	974	3717	12	4703
20-Jan	833	3485	4	4322
21-Jan	566	3104	5	3675
22-Jan	239	3045	7	3291
23-Jan	381	2832	12	3225
Grand Total	34403	82452	1133	117988
Avg calls on daily basis	1496	3585	49	5130
% of Avg calls on daily basis	29%	70%	1%	


From the table we can infer that the current abandon rate is around 30%


<u>Findings</u> - VII

The distribution of manpower plan per time bucket to keep abandon rate at 10% i.e. keeping call answered rate at 90% is as follows:-

Call_Status	answered	
Row Labels	Count of Customer_Phone_No	Agents allotment
9_10	4428.0	3
10_11	6368.0	4
11_12	8560.0	6
12_13	9432.0	7
13_14	8829.0	6
14_15	7974.0	6
15_16	7760.0	5
16_17	7852.0	5
17_18	7601.0	5
18_19	6200.0	4
19_20	4578.0	3
20_21	2870.0	2
Grand Total	82452.0	57

Findings - VIII

	//	Total hours needed	/	
Night time slot	Calls per slot	76.41135	Agents needed	Time distribution
21_22	3	7.641135	13	10%
22-23	3	7.641135	13	10%
23_24	2	5.09409	8	7%
00_01	2	5.09409	8	7%
01_02	1	2.547045	4	3%
02_03	<u> </u>	2.547045	4	3%
03_04	1	2.547045	4	3%
04_05	1	2.547045	4	3%
05_06	3	7.641135	13	10%
06_07	4	10.18818	17	13%
07_08	4	10.18818	17	13%
08_09	5	12.735225	21	17%
Total	30	76.41135	126	100%

The table above shows the desired distribution of the night calls to keep the abandon rate at 10%

• Since we have only 17 agents during night we need to distribute in an non analytical way i.e. the agents who work in 19_20, 20_21 time bucket to wait and work in 21_22 and 22_23 time buckets as well

• Also agents who work during 9_10, 10_11 time bucket can be asked to work for 7_8 and 8_9 time bucket as well

• The agents who work in the time bucket 1_2, 2_3, 3_4 and 4_5 can be asked to work in time buckets 6_7, 7_8 and 8_9 so as to keep the abandon rate at 10%


<u>Analysis</u>

Using the Why's approach I am trying to find some more insights:-

- Why is that the average call answered were more in count in the time bucket of 10_11, 18_19, 19_20 and 20_21 as compared to other time buckets?
- ---> Most of the customers are office people and they need to reach office by 10 AM or 11 AM, so these customers call during 10_11 time bucket i.e. while they in transit to office or have reached office and have some free time before they start their work; During the time bucket 18_19, 19_20 and 20_21 the customers have either left their office and reached home or they are in the transit to reach home and during these time period i.e. 6 Pm to 9 Pm people have free time where they can share their concern to the customer service. During these time buckets most of the calls are from individual people with small problems which can be resolved quickly
- Why is it that the time bucket 11_12 has the highest number of incoming calls but it does not have the highest number of average answered calls?
- ---> Maybe there were more number of incoming calls in the time bucket 11_12 and there were not enough personnel to handle most of the queries of the customers during the 11_12 time bucket

<u>Analysis</u> (Cont...)

- Why is it that the total number of incoming calls reached it's peak value during the time bucket 11_12 and got decreased from time bucket 12_13 onwards?
- ---> It is a general tendency of the customers(people) that they want their query/complaint get resolved on that particular day itself when they called the customer center; so most of the customers try to place their complaint/query before 12 Pm so that by the end of the day their complaint gets resolved depending upon the complexity of the problem faced by the customer
- Why is proportion if the monthly transfer rate is less than compared to monthly answered and abandon rate?
- ---> In most of the customer service centers they have the dedicated toll free number of the particular problem faced by the customer, also there are skilled people at the call center who are well versed with the problems they come across while handling and guiding thousands of customers on daily basis; And so most of the calls gets answered by providing an solution to the query, some of the calls get abandon due to unavailability or shortage of the skilled person, and very few calls gets transferred from the junior level to senior level if the problem is too complex for the junor level expertise

<u>Analysis</u> (Cont...)

- Why is that one cannot provide the exact distribution of agents during the night time i.e. from 9 PM to 9 AM if the number of agents available during the night shift are already defined, so as to keep the abandon rate 10%?
- ---> For this particular case, Since we have only 17 agents during night we need to distribute in an non analytical way i.e. the agents who work in 19_20, 20_21 time bucket to wait and work in 21_22 and 22_23 time buckets as well. Also agents who work during 9_10, 10_11 time bucket can be asked to work for 7_8 and 8_9 time bucket as well. he agents who work in the time bucket 1_2, 2_3, 3_4 and 4_5 can be asked to work in time buckets 6_7, 7_8 and 8_9 so as to keep the abandon rate at 10%. Also, the company needs to consider various factors like how far is the home of the agent if he/she is made to do night shift, Is the transport facility available during the night hours from the agent's home to company and many other factors and hence the exact distribution cannot be given using an analytical approach

Conclusion

In the conclusion, I would like to conclude the following:-

- From the previous analysis we can derive that Avg calls answered per agent is 198.6 in each time bucket
- We need to reduce the abandon rate by 30%(current) 10% (desired) = 20% i.e. we need to increase call answered rate by 70% (current) + 20%(change) = 90% .So, we need to have 90% of the total calls to be answered so as to reduce the abandon rate to 10%
- Total avg calls incoming per day = 5130 Avg calls answered per second = 198.6 Answered rate = 90% i.e. 0.9 Seconds per hour = 3600 So, time required to answer 90% of the incoming calls = 5130 * 198.6 * 0.9 / 3600 = So, new total number of agents working per day is 255 divided by the number of hours an agent actually works(on a consumer call) i.e. 4.5 = 255/4.5 = 56.67 == 57 Agents working per day 254.7001826
- So, to have a 10% abandon rate we need 57 Agents working per day
- From the assumptions given the following points were noted:-
- In a day an agent work for 9 hours → Total Agent working hours = 9 HOURS
- Out of the total 9 hours , 1.5 hours goes for lunch and coffee/tea breaks; so remaining working hours = 9 – 1.5 = 7.5 HOURS
- Out of the remaining 7.5 hours per day an agent is occupied with consumers call for only 60% of the time i.e. 60% of 7.5 i.e. 0.6 * 7.5 = 4.5. So, an agent spends only 4.5 hours per day out of total 7.5 hours on consumer calls. An agent works 6 days a week. In a month of 30 days 6 days per week; In a month of 30 there are 4 weeks; 7 days per week means total 28 days out of which 4 days are unplanned leave

<u>Conclusion (Cont...)</u>

- Days of agent on floor = (20*7)/28 = 5 days. Now, total days left 28 4 = 24 days. Per week there is one Sunday which is an official holiday for all workplaces around the world; So in a month of 30 there are 4 Sundays. Now total days left for work = 24 4 = 20 days .So, an agent is available to work for 20 days in a month of 30 days
- In a certain scenario there are calls from consumers not only during the day time but also during the night time and if there are no agents available during the night time to answer the call then it creates a bad impression on the consumer regarding the company
- Now we need to give the distribution of the total manpower available for each time bucket right from 9AM to 9 PM and then from 9 PM to 9 AM, keeping the abandon rate at 10% i.e. keeping the answered rate at 90%
- For each 100 day calls there are 30 night calls; then for 5130 day calls there will be : 5130*30/100 = 1539 night calls. So there are 1539 night calls for a total of 5130 day calls
- So, the additional working hours keeping the answered rate at 90% will be 1539 * 198.6(avg calls answered per sec) * 0.9 / 3600(total seconds in each hour) = 76.41135
- So, additional agents needed by the company to answer night calls as well be 76.41135/4.5 = 16.98 == 17
- So, we need additional 17 agents to answer the night calls as well, making the total number of agents working per day keeping the answer rate to 90% will be 57(day call answer 90%) + 17(night call answer 90%) = 74 agents . So, we need 74 Agents per day to answer the consumer calls from day as well as the night time keeping the answered rate to 90% / Abandon rate to 10%

Appendix

• Data Analytics Process:-

---> Link for the shared PDF on Google Drive:

Data Analytics Trainee Assignement - 1.pdf - Google Drive

Instagram User Analytics: ----> Link for the shared file on Google Drive:
 Data Analytics Trainee Task - 2.pdf - Google Drive
 ----> Link for shared sql file on google drive:
 Trainity_Data_Analytics_Trainee_Task_2.sql - Google Drive

• Operation Analytics and Investigating Metric Spike Analysis:-

-----> Link for the shared file on Google Drive: <u>Data Analytics Trainee Task - 3.pdf - Google Drive</u> -----> Link for shared sql files on Google Drive and GitHub: <u>Trainity Data Analytics Trainee/Trainity Data Analytics Tra</u> <u>inee_task_3.sql at main ·</u> <u>ADVAIT135/Trainity Data Analytics Trainee · GitHub</u>

Trainity_Data_Analytics_Trainee_task_3.sql - Google Drive

<u>Trainity_Data_Analytics_Trainee/task3_case_sudy_2_Investig</u> <u>ating_Metric_Spike.sql at main ·</u> <u>ADVAIT135/Trainity_Data_Analytics_Trainee · GitHub</u>

<u>task3_case_sudy_2_Investigating_Metric_Spike.sql - Google</u> <u>Drive</u>

• Hiring Process Analytics:-

----> Link for shared PDF on google drive: <u>Data Analytics Trainee Task - 4.pdf - Google Drive</u> ----> Link for Excel sheet on Google Drive(Analysis): <u>Statistics.xlsx - Google Sheets</u>

Appendix (Cont...)

• IMDB Movie Analysis-

---> Link for the shared PDF on Google Drive:

Data Analytics Trainee Task - 5.pdf - Google Drive

----> Link for shared excel files folder on google drive: (Download the excel sheets to view as they are huge files and they can't be viewed online)

trainity_task_5_final_project_excel_files - Google Drive

• Bank Loan Case Study:-

----> Link for the shared file on Google Drive:

<u>Trainity Data Analytics Trainee Task 6.pdf - Google Drive</u> -----> Link for shared excel files folder on google drive: (Download the excel sheets to view as they are huge files and they can't be viewed online)

trainity_task_6_final_project_2 - Google Drive

• XYZ Ads Airing Report :-

-----> Link for the shared file on Google Drive:

Trainity Data Analytics Trainee Task - 7.pdf - Google Drive ----> Link for shared excel files folder on google drive: (Download the excel sheets to view as they are huge files and they can't be viewed online)

trainity_task_7_final_project_3 - Google Drive

• ABC Call Volume Trend Analysis:-

-----> Link for the shared file on Google Drive:

<u>Trainity Data Analytics Trainee Task 8.pdf - Google Drive</u> -----> Link for shared excel files folder on google drive: (Download the excel sheets to view as they are huge files and they can't be viewed online)

trainity_task_8_final_project_4 - Google Drive

Appendix (Cont...)

• Link to GitHub Portfolio:-ADVAIT135 (ADVAIT GURUNATH CHAVAN) · GitHub

- Link to my Kaggle Portfolio:-ADVAIT CHAVAN | Contributor | Kaggle
 - Link to HackerRank Profile:-

ADVAIT CHAVAN - advaitchavan135 | HackerRank

• Link to LinkedIn Profile:-

https://www.linkedin.com/in/advait-chavan-69928b129/